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Abstract 

 

Under stochastic volatility (SV), despite the abundant literature on American option 

pricing, there is little work on American option hedging. This paper develops a static 

hedging portfolio (SHP) method for hedging and pricing an American option under SV 

by constructing a portfolio of European options to match the payoff, delta, and vega of 

the target American option along its early exercise boundary. The novelty of the 

proposed SHP method is incorporating the expected variance conditional on the stock 

price into Chung and Shih’s (2009) method and further improving their method by 

imposing the vega-matching condition. Our numerical analyses show the superiority of 

the proposed SHP method in effectively hedging and accurately pricing American 

options in the presence of SV. Pricing errors (hedging risks, measured by 5% Value at 

Risk) of the proposed SHP methods range from 0.11% to 0.14% (0.78% to 0.88%) of 

the average option value of a large, randomly generated set of American option 

contracts. Moreover, the introduction of the vega-matching condition has significant 

advantages in enhancing the hedging and pricing performance of the proposed SHP 

method. 
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1. Introduction 

The hedging and pricing of American options are classic and ongoing issues, and 

additional consideration of stochastic volatility (SV) makes the hedging and pricing of 

American options even more complex and difficult. Besides the classic 

multidimensional tree models and finite different methods (FDM), there are many other 

methods for the pricing of American options under the SV assumption. Most of these 

methods focus primarily on pricing issues, with little emphasis on hedging. Even when 

hedging is addressed, this is often through the dynamic delta-neutral hedging (DDH) 

method. However, this paper focuses on using the static hedging portfolio (SHP) 

method to study the pricing and hedging issues of American options under SV.  

The fundamental concept behind the SHP method is to employ standard European 

options to create a portfolio whose value corresponds to the value of target options at 

some boundary conditions and at the expiration date, by determining the maturity date, 

strike price, and investment amount of each European option in the portfolio. Static 

hedging refers to a situation where, throughout the entire duration of the target option, 

regardless of stock price fluctuations, the issuer (hedger) does not need to make any 

adjustments to the SHP. Either at or before maturity, when it is time to pay the due 

compensation to the holder of the target option, the issuer (hedger) merely needs to 

liquidate the SHP to generate the corresponding cash flow to pay the option holder. 

Although the main purpose of the SHP method is to achieve more effective hedging 

and/or save hedging transaction costs, the SHP value can also closely approximate the 

value of the target option, as long as the SHP’s payoffs at the boundary conditions are 

close to those of the target option. Theoretically speaking, since the target options and 

SHP share the same partial differential equation (PDE), if they have equal boundary-

condition payoffs, their value today should be identical. Last, compared with the DDH 

method, the SHP method is less sensitive to model risk, since the pricing biases of the 

target option and SHP caused by model risk could partially offset for each other. 

Static hedging was first introduced by Bowie and Carr (1994), Derman, Ergener 

and Kani (1995), and Carr, Ellis and Gupta (1998). It is used to hedge exotic options, 

such as European barrier options, under the assumption of the geometric Brownian 
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motion (GBM) model. Contrary to the focus of most of the SHP literature, which 

predominantly examines barrier options or other exotic European options, Chung and 

Shih (2009) are the first to apply the SHP method to the valuation of American options. 

Building upon the value-matching condition proposed by Derman, Ergener, and Kani 

(1995), they introduce an additional smooth-pasting condition to better align with the 

boundary conditions of American options. Using backward induction to solve for the 

investment proportions of European vanilla options in the SHP, they concurrently 

derive the critical exercise price for American options, which serves as an approximate 

estimate of the true early exercise boundary. Under both GBM and constant elasticity 

of variance (CEV) models, Chung and Shih (2009)’s SHP method accurately 

determines the price, delta, and gamma values of American options. Similarly, 

following this vein, Chung, Shih, and Tsai (2013a, 2013b) extend this methodology to 

hedge and evaluate American touch-in and touch-out options.  

The literature on SHP methods under non-GBM models is sparse, but a summary 

of the key contributions is as follows. To our knowledge, Fink (2003) is the first to 

consider using an SHP to hedge and price European up-and-out call options under the 

Heston (1993) SV model.1 To address the additional dimension of variance, Fink (2003) 

chooses one to four representative variances and includes plain call options with strike 

prices higher than the barrier into the SHP to ensure value matching at the barrier 

boundaries under these representative variances. By introducing value matching at each 

time and variance node, theoretically, the hedging performance of the constructed SHP 

is better the finer the segmentation in time and variance dimensions. Nalholm and 

Poulsen (2006) extend the framework of Fink (2003) within a stochastic volatility with 

log-normal jumps. They focus on static hedging for European up-and-out barrier 

options, considering the inclusion of additional European vanilla options in the SHP, 

whose strike price is the most possible stock price level after the stock price penetrates 

the barrier from below due to a jump occurring. Takahashi and Yamazaki (2009) 

implement static hedging for European path-independent options in an SV model. They 

 
1 To account for the SV model, Allen and Padovani (2002) also conduct optimized value matching at 
time and variance nodes along the barrier boundary. Their method, purely a hedging model, combines 
static and dynamic hedging to form a quasi-static hedge, aiming for optimized hedging of long-term or 
exotic European options. Since their method is not an exact SHP method, theoretically, it cannot be used 
to evaluate the target barrier option. 
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consider a pricing process with local volatility, identical to the stock price distribution 

in the SV model, based upon which an SHP, consisting of risk-free assets, shorter-

maturity forwards, European calls, and puts, can be determined. Tsai (2014) hedges and 

prices European barrier options under CEV models. Unlike Derman, Ergener, and Kani 

(1995) or earlier works, he considers both value-matching and theta-matching 

conditions and introduces binary options into the SHP to significantly improve hedging 

effectiveness. Huh, Jeon, and Ma (2020) use an SHP to hedge and price European 

barrier options in a fast mean-reverting SV model. Leveraging the fast mean-reverting 

characteristic, they combine asymptotic expansion and perturbation theory, as 

suggested by Fouque, Papanicolaou, Sircar, and Sølna (2003), to transform the static 

hedging problem along the dimensions of both time and variance into two simpler static 

hedging problems along just the time dimension. Last, Guo and Chang (2020) evaluate 

European barrier options using an SHP in a generalized CEV model, where stock price 

volatility is an exponential function of the stock price, unrestricted in its exponent. 

Following Chung, Shih, and Tsai (2010, 2013a) and Tsai (2014), they not only consider 

the value-matching but also theta-matching conditions and incorporate binary options 

into the SHP to improve matching performance. Moreover, they validate the use of 

repeated Richardson extrapolation to significantly enhance the accuracy of the SHP in 

evaluating European barrier options. 

To the best of our knowledge, despite of the well-known advantages of SHP 

methods, there is no SHP method studying the hedge of American options under SV. 

We argue the possible reason is because there are practical and extensional concerns to 

Fink’s (2003) method, although his method seems theoretically sound under the SV 

model. The first concern is about the choice of representative variances. In the time 

dimension, based on the option’s time to maturity, such as half a year, appropriate and 

dispersed time points for value matching within this finite period, such as monthly or 

weekly intervals, can be sufficient. However, the appropriate upper and lower bounds 

of variance at each time point are unknown. Fink’s (2003) method is limited to 

arbitrarily selecting a few representative variance values, which remain constant 

throughout the duration of the target option, casting doubt on whether this adequately 

represents the entire variance dimension. The second is the quantity of options in the 
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SHP. When both variance and time dimensions are considered, the number of options 

included in the SHP grows exponentially, which gradually erodes the benefit of lower 

hedging transaction costs for the SHP method. Moreover, while theoretical research 

might assume the availability of vanilla European options with any expiration date and 

strike price, in practice, the possible expiration dates and (deeply out-of-the-money) 

strike prices for European options are limited. The third is the numerical issue when 

solving systems of equations. In Fink’s method, out-of-the-money options with the 

same expiration date but different strike prices and variances may have very small and 

similarly scaled values, possibly leading to very positive or negative results when 

determining the investment amounts of plain vanilla European options. If large-scale 

trading for any single option is implemented, the SHP method’s benefit of lower 

hedging transaction costs could be further undermined, as discussed by Nalholm and 

Poulsen (2006), Huh, Jeon, and Ma (2020), and Fink (2003). Last but not the least, 

Fink’s (2003) method is designed for European barrier options, utilizing the known 

(constant) barrier level to determine the strike prices of options in an SHP. It may not 

be feasible to combine Fink’s method with the SHP methods developed by Chung and 

Shih (2009) or Chung, Shih, and Tsai (2013a, 2013b) for hedging and evaluating 

American options under SV, since their methods need to concurrently construct the SHP 

and determine the unknown early exercise boundary for the target American options.2 

Furthermore, under SV, the early exercise boundary at a given time point is a function 

of both stock price and variance, adding to the model complexity.  

Rather than arbitrarily considering a few fixed representative variances, this paper 

introduces the concept of expected variance conditional on the stock price into Chung 

and Shih’s (2009) SHP method for hedging and pricing American options. Since it is 

impossible to increase the number of representative variances in an unlimited manner, 

we consider only the most probable occurring variance along the early exercise 

boundary conditions, i.e., we consider the conditional expected variance given the stock 

 
2  This characteristic allows Chung and Shih’s (2009) and Chung, Shih, and Tsai’s (2013a, 2013b) 
methods to not only hedge but also price American options. This is because the early exercise boundary 
of American options is a free boundary problem: solving for this boundary also yields the present value 
of the American option. In other words, if another American option valuation model is used first to obtain 
the early exercise boundary, the present value of the American option is also obtained. Therefore, 
subsequently using Fink’s SHP method to fit the obtained boundary conditions of the American option 
and achieving an approximate valuation would be somewhat redundant. 
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price equal to the early exercise boundary. Note that with the use of conditional 

expected variance, the method proposed in this paper differs from the original concept 

of the SHP method, such as in Fink (2003), in accurately fitting boundary conditions 

for all examined time-variance nodes. We believe that if the proposed SHP method has 

a greater likelihood of fitting well when touching the early exercise boundary of the 

target American option, it probabilistically should produce more accurate valuation 

results for the target American option, and the average hedging performance for the 

target American option should be better. Furthermore, since the value and early exercise 

boundaries of American options are sensitive to changes in variance, and to mitigate 

the limitation of considering only one conditional expected variance at each examined 

time point, in addition to the value-matching condition and smooth-pasting condition 

proposed by Chung and Shih (2009), the SHP method proposed in this paper also 

considers the vega-matching condition.  

We argue that there are several theoretical advantages of the proposed SHP method. 

First, Fink (2003) arbitrarily considers a few fixed representative volatilities; for 

example, he chooses the initial volatility level as one such representative volatility. 

However, it is critical to note that the probability of these representative volatilities 

occurring at the boundary conditions might be very low. For American puts, for 

example, the critical stock price on the early exercise boundary could be deeply lower 

than the stock price today; moreover, due to the inverse relationship between the stock 

price and volatility processes in Heston’s SV model, when the stock price moves toward 

the early exercise boundary, the accompanying volatility level could be substantially 

higher than its initial level. Even if Fink’s (2003) method fits the boundary conditions 

under these low-probability representative volatilities, this might not necessarily 

enhance the hedging and valuation capabilities of the SHP method. Second, since this 

paper considers only a single variance value that is most likely to occur on the early 

exercise boundary, it is not difficult to incorporate our idea with Chung and Shih’s (2009) 

method for hedging and pricing American options given SV. Third, under the SV model, 

the variance is stochastic as well as the stock price. A natural choice, therefore, is to 

consider the vega-matching condition on the early exercise surface in the time, stock 

price, and variance space. If the smooth-pasting condition ensures that the sensitivities 
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of the target American option and the SHP to stock price changes on the early exercise 

boundary are consistent, then the vega-matching condition ensures that their 

sensitivities to variance changes on the early exercise boundary are consistent. Indeed, 

the experiments in this paper demonstrate that the theoretical advantages can be 

translated to the superior performance of the proposed SHP method for pricing and 

hedging American puts. Pricing errors (hedging risks, measured by 5% Value at Risk) 

of the proposed SHP methods range from 0.11% to 0.14% (0.78% to 0.88%) of the 

average option value of a large, randomly generated set of American option contracts, 

and the 5% Value at Risk of the proposed SHP method is around 3% of that of the DDH 

method. 

The remainder of the paper is organized as follows. Section 2 begins by reviewing 

the construction of an SHP for pricing American options in Chung and Shih (2009) and 

Heston’s SV option pricing formula for European options. Section 3 details how to 

implement our conditional expectation of the variance under the SV model and integrate 

it into the SHP method of Chung and Shih (2009) for hedging and pricing American 

options. Section 4 analyzes the pricing, convergence, and hedging performance of the 

proposed SHP method. Section 5 concludes the paper. 

2. Review of Chung and Shih (2009) and Heston (1993) 

2.1 Chung and Shih’s (2009) SHP Method for Pricing American Options 

Chung and Shih (2009) establish an SHP for American options under the assumption of 

the GBM model for the underlying stock price, i.e.,  

ௗௌሺ௧ሻ

ௌሺ௧ሻ
ൌ ሺ𝑟 െ 𝑞ሻ𝑑𝑡 ൅ 𝜎𝑑𝑊ሺ𝑡ሻ,                     (1) 

where 𝑆ሺ𝑡ሻ is the underlying stock price at 𝑡, 𝜎 is a constant volatility, 𝑟 is the risk-

free rate, 𝑞 is the dividend yield, and 𝑊ሺ𝑡ሻ denotes a standard Wiener process in the 

risk-neutral probability measure. Denote 𝐹 as the value of any derivative asset on the 

underlying stock 𝑆. Then 𝐹 satisfies the following PDE: 
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ଵ

ଶ
𝜎ଶ𝑆ଶ𝐹ௌௌ ൅ ሺ𝑟 െ 𝑞ሻ𝑆𝐹ௌ ൅ 𝐹௧ ൌ 𝑟𝐹,                  (2) 

where 𝐹ௌ  and 𝐹௧  denote the partial differentiation of 𝐹  with respect to 𝑆  and 𝑡 , 

respectively, and 𝐹ௌௌ  denotes the second-order partial differentiation of 𝐹  with 

respect to 𝑆. Based on Equation (2), for all derivative assets on 𝑆, their different values 

result from their different boundary conditions. This feature inspires the emergence of 

the SHP method: if one can construct a portfolio with more fundamental options on 𝑆 

(hedging position) by determining their strike prices and times to maturity to match the 

boundary conditions of a more complicated target derivative on 𝑆 (hedged position), 

one can obtain the equality of values between the hedging and hedged positions not 

only at the boundary but also the theoretical values today. Therefore, the SHP method 

serves both hedging and pricing purposes.  

However, the early exercise boundary of American options is not known before 

conducting the SHP method; moreover, since it is a free boundary problem, the early 

exercise boundary of American options should be determined concurrently during the 

pricing process, i.e., during the process of constructing the SHP. To solve this problem, 

Chung and Shih (2009) impose value-matching as well as smooth-pasting conditions 

between the target American put and the SHP hedging positions on the early exercise 

boundary. During the construction of the SHP from the maturity backward toward today, 

the early exercise boundary of the target American put is also determined 

simultaneously and the information of the early exercise boundary at later time points 

affects the early exercise boundary at earlier time points.  

Chung and Shih (2009) begin the construction of the SHP with one unit of the 

counterpart European vanilla put, with its strike price ( 𝑋 ) and maturity ( 𝑇 ) 

corresponding to the target American put. Then, 𝑛 evenly-spaced time points before 

maturity are selected, i.e., 𝑡଴ , 𝑡ଵ ൌ 𝑡଴ ൅ 𝛿𝑡 , … , 𝑡௡ିଵ ൌ 𝑇 െ 𝛿𝑡 , where 𝛿𝑡 ൌ ்ି௧బ

௡
 , 

assuming that the SHP also matches the boundary condition of the American put at 

these time points. To determine the unknown boundary condition 𝐵௜ at 𝑡௜, one must 

add to the SHP 𝑤௜ units of standard European puts with maturity at 𝑡௜ାଵ and a strike 

price of 𝐵௜. Taking the time point 𝑡௡ିଵ for example, the value-matching and smooth-
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pasting conditions on the early exercise boundary are employed to solve the two 

unknowns, 𝐵௡ିଵ and 𝑤௡ିଵ, as 

𝑋 െ 𝐵௡ିଵ ൌ 𝑝ሺ𝐵௡ିଵ, 𝑋, 𝑇 െ 𝑡௡ିଵ, 𝜎ଶሻ ൅ 𝑤௡ିଵ𝑝ሺ𝐵௡ିଵ, 𝐵௡ିଵ, 𝑇 െ 𝑡௡ିଵ, 𝜎ଶሻ,  (3) 

     െ1 ൌ 𝑝ௌሺ𝐵௡ିଵ, 𝑋, 𝑇 െ 𝑡௡ିଵ, 𝜎ଶሻ ൅ 𝑤௡ିଵ𝑝ௌሺ𝐵௡ିଵ, 𝐵௡ିଵ, 𝑇 െ 𝑡௡ିଵ, 𝜎ଶሻ, (4) 

where 𝑝ሺ𝑆, 𝑋, 𝑇𝑀, 𝜎ଶሻ  and 𝑝ௌሺ𝑆, 𝑋, 𝑇𝑀, 𝜎ଶሻ  are the Black–Scholes European put 

price and delta, respectively, with the inputs of the stock price (𝑆), the strike price (𝑋) 

and remaining time to maturity of the option (𝑇𝑀), and the stock return variance (𝜎ଶ). 

Since the risk-free interest rate (𝑟) and dividend yield (𝑞) are fixed as constants, we do 

not include them as the input parameters for simplicity. After acquiring the weight 

𝑤௡ିଵ and the early exercise boundary 𝐵௡ିଵ at 𝑡௡ିଵ, one should iteratively perform 

backward induction from 𝑡௡ିଶ to 𝑡଴ to determine the weight and the boundary for the 

remaining time points. Finally, the value of the SHP given 𝑛  time points for the 

American put, 𝑃௡
ௌு௉ሺ𝑡଴ሻ, is formulated as  

𝑃௡
ௌு௉ሺ𝑡଴ሻ ൌ 𝑝ሺ𝑆ሺ𝑡଴ሻ, 𝑋, 𝑇 െ 𝑡଴, 𝜎ଶሻ  

൅𝑤௡ିଵ𝑝ሺ𝑆ሺ𝑡଴ሻ, 𝐵௡ିଵ, 𝑇 െ 𝑡଴, 𝜎ଶሻ   

൅𝑤௡ିଶ𝑝ሺ𝑆ሺ𝑡଴ሻ, 𝐵௡ିଶ, 𝑡௡ିଵ െ 𝑡଴, 𝜎ଶሻ  

൅ ⋯ 

൅𝑤଴𝑝ሺ𝑆ሺ𝑡଴ሻ, 𝐵଴, 𝑡ଵ െ 𝑡଴, 𝜎ଶሻ.                        (5) 

Chung and Shih (2009) show that when 𝑛  increases, 𝑃௡
ௌு௉ሺ𝑡଴ሻ  converges to the 

theoretical value of the target American put. 

2.2 Heston SV Model for Pricing European Options 

After the 1987 crash, the assumption of constant volatility became unrealistic. Among 

abundant SV literature, this paper focuses on the classical Heston (1993) model, which 

is an affine SV model and therefore prices European options efficiently with the analytic 

option formulas proposed by Heston (1993). Heston’s assumptions of stochastic 

processes under the risk-neutral probability measure are 
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ௗௌሺ௧ሻ

ௌሺ௧ሻ
ൌ ሺ𝑟 െ 𝑞ሻ𝑑𝑡 ൅ ඥ𝑣ሺ𝑡ሻ𝑑𝑊ሺ𝑡ሻ, (6) 

     𝑑𝑣ሺ𝑡ሻ ൌ 𝜅ሾ𝜃 െ 𝑣ሺ𝑡ሻሿ𝑑𝑡 ൅ 𝜎௩ඥ𝑣ሺ𝑡ሻ𝑑𝑍ሺ𝑡ሻ,            (7) 

 𝑑𝑍ሺ𝑡ሻ ൌ 𝜌𝑑𝑊ሺ𝑡ሻ ൅ 𝜖ඥሺ1 െ 𝜌ଶሻ𝑑𝑡,                 (8) 

where 𝑣ሺ𝑡ሻ  is the variance process of stock return at time 𝑡 , 𝜅  determines the 

reverting speed of the variance, 𝜃 is the long run mean of variance, 𝜎௩ is the volatility 

of the variance, 𝑊ሺ𝑡ሻ and 𝑍ሺ𝑡ሻ are Wiener processes with correlation 𝜌, and 𝜖 is a 

standard normally distributed random variable which is independent of 𝑑𝑊ሺ𝑡ሻ. The 

value of any derivative asset 𝐹  on the underlying stock 𝑆 , such as European and 

American options, satisfies the following PDE: 

ଵ

ଶ
𝑣𝑆ଶ𝐹ௌௌ ൅ 𝜌𝜎௩𝑣𝑆𝐹ௌ௩ ൅ ଵ

ଶ
𝜎௩

ଶ𝑣𝐹௩௩ ൅ ሺ𝑟 െ 𝑞ሻ𝑆𝐹ௌ ൅ 𝜅ሺ𝜃 െ 𝑣ሻ𝐹௩ ൅ 𝐹௧ ൌ 𝑟𝐹,  (9) 

where 𝐹௦ and 𝐹௦௦  ( 𝐹௩  and 𝐹௩௩) represent the first- and second-order partial 

derivatives of value 𝐹 with respect to stock price 𝑆 (the variance of stock return 𝑣) 

and 𝐹௦௩ denotes the cross partial derivative with respect to 𝑆  and 𝑣 , whereas 𝑃௧ 

signifies the partial derivative with respect to time 𝑡. 

Based on the PDE in Equation (9), Heston (1993) derives the analytic-form pricing 

formula for the European call option as 

𝐻௖൫𝑆ሺ𝑡଴ሻ, 𝑋, 𝑇 െ 𝑡଴, 𝑣ሺ𝑡଴ሻ൯ ൌ ଵ

ଶ
𝐽ሺ𝑇 െ 𝑡଴; െ𝑖ሻ െ ௄

ଶ
𝐽ሺ𝑇 െ 𝑡଴; 0ሻ  

െ ଵ

గ
׬

ூ௠ሾ௃ሺ்ି௧బ;ି௜ି௨ሻ ୣ୶୮ሺ௜௨ൈ୪୬ ௄ሻሿ

௨

∞

଴  𝑑𝑢  

൅ ௄

గ
׬

ூ௠ሾ௃ሺ்ି௧బ;ି௨ሻ ୣ୶୮ሺ௜௨ൈ୪୬ ௄ሻሿ

௨

∞

଴  𝑑𝑢,            (10) 

where 

𝐽ሺ𝑇 െ 𝑡଴; 𝜙ሻ ൌ 𝑆ሺ𝑡ሻ௜థ expሾ𝐴ሺ𝑇 െ 𝑡଴; 𝜙ሻ ൅ 𝐵ሺ𝑇 െ 𝑡଴; 𝜙ሻ𝑣ሺ𝑡଴ሻሿ,        

𝐴ሺ𝑇 െ 𝑡଴; 𝜙ሻ ൌ ሾ𝜙𝑖ሺ𝑟 െ 𝑞ሻ െ 𝑟ሿሺ𝑇 െ 𝑡଴ሻ  
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െ ఑ఏ

ఙೡ
మ ቂሺ𝜀 െ 𝜌𝜎௩𝜙𝑖 ൅ 𝜅ሻሺ𝑇 െ 𝑡଴ሻ െ 2 ln ቀ1 െ

ሺఌାఘఙೡథ௜ି఑ሻሺଵିୣ୶୮ሺିఌሺ்ି௧బሻሻ

ଶఌ
ቁቃ, 

𝐵ሺ𝑇 െ 𝑡଴; 𝜙ሻ ൌ ௜థሺ௜థିଵሻሺଵିୣ୶୮ሺିఌሺ்ି௧బሻሻሻ

ଶఌିሺఌା௜థ஢ೡఘି఑ሻሺଵିୣ୶୮ሺఌሺ்ି௧బሻሻሻ
, 

𝜀 ൌ ඥሺ𝜌𝜎௩𝜙𝑖 െ 𝜅ሻଶ െ 𝜎௩
ଶ𝜙𝑖ሺ𝜙𝑖 െ 1ሻ.  

The parameters in the function 𝐻௖ሺ𝑆, 𝑋, 𝑇𝑀, 𝑣ሻ include the stock price, strike price 

and time to maturity of the examined options, and the initial variance level. We omit 𝑟, 

𝑞 , 𝜅 , and 𝜃  in the parameter list for simplicity. In addition, to obtain the value of 

European put options under the Heston model, we exploit the put-to-call parity equation, 

which is 

𝐻௣൫𝑆ሺ𝑡଴ሻ, 𝑋, 𝑇 െ 𝑡଴, 𝑣ሺ𝑡଴ሻ൯ ൌ 𝐻௖൫𝑆ሺ𝑡଴ሻ, 𝑋, 𝑇 െ 𝑡଴, 𝑣ሺ𝑡଴ሻ൯  

െ𝑆𝑒ି௤ሺ்ି௧బሻ ൅ 𝑋𝑒ି௥ሺ்ି௧బሻ.      (11) 

3. Our Model 

3.1 Static Hedging Portfolio under SV 

If the stock price follows Heston’s SV model, it is not straightforward to hedge and 

price American options using the SHP method proposed in Chung and Shih (2009) due 

to the additional variance dimension. The major problem is because the spirit of their 

SHP method needs to concurrently solve the early exercise surface (rather than the early 

exercise boundary line) in the space of ሺ𝑆, 𝑣, 𝑡ሻ during the construction of the SHP. 

Even if there is someone who can achieve the goal of solving the early exercise surface, 

the proposed method is nearly infeasible due to the constraint of limited number of 

options existing in markets. To address this problem, we examine matching conditions 

for only the expected variance conditional on the critical early exercise stock price, the 

most probable variance level when the stock price touching the early exercise boundary, 

rather than for the constant representative variances discussed in the literature. As we 

argue in the introduction, if our SHP method has a greater likelihood of fitting well 

when touching the early exercise boundary of the target American option, it should on 

average produce more accurate valuation results for the target American option, and the 
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average hedging performance for the target American option should be satisfactory. In 

addition to the value-matching and smooth-pasting conditions, we impose the vega-

matching condition. According to Equation (9), since both 𝐹௦ and 𝐹௩ have roles to 

play, it is natural to consider the vega-matching condition (the sensitivity of the SHP 

with respect to 𝑣) in addition to the smooth-pasting condition (the sensitivity of the 

SHP with respect to 𝑆). 

 Following Chung and Shih (2009), we initiate the process with one unit of standard 

European put options, where all parameters correspond with the target American put 

option. Next, we evenly divide the remaining time before maturity into 𝑛 time points, 

𝑡଴ , 𝑡ଵ ൌ 𝑡଴ ൅ 𝛿𝑡 , … , 𝑡௡ିଵ ൌ 𝑇 െ 𝛿𝑡 , where 𝛿𝑡 ൌ ்ି௧బ

௡
 . Third, we match the value-

matching and smooth-pasting conditions by adding 𝑤௜ (to be solved) units of standard 

European options with maturity at 𝑡௜ାଵ and strike price at 𝐵௜ (to be solved) into the 

SHP. However, different from Chung and Shih (2009), we replace the constant variance 

𝜎ଶ with the conditional expected variance, 𝐸ሾ𝑣ሺ𝑡௜ሻ|𝐵௜ሿ, the most probable occurring 

variance on the early exercise boundary 𝐵௜ . The details of how to calculate 

𝐸ሾ𝑣ሺ𝑡௜ሻ|𝐵௜ሿ will be discussed in the next two sections. To fulfill the additional vega-

matching condition, we refer to Fink (2003) and add 𝑤ෝ௜ (to be solved) units of more 

deeply out-of-the-money European put options with maturity at 𝑡௜ାଵ and strike price 

at 𝐵௜ െ 𝛾, where 𝛾 ൐ 0 is a given parameter. Our SHP is conducted using backward 

iteration, beginning at 𝑡௡ିଵ, as follows:  

𝑋 െ 𝐵௡ିଵ ൌ 𝐻௣ሺ𝐵௡ିଵ, 𝑋, 𝑇 െ 𝑡௡ିଵ, 𝐸ሾ𝑣ሺ𝑡௡ିଵሻ|𝐵௡ିଵሿሻ  

൅𝑤௡ିଵ𝐻௣ሺ𝐵௡ିଵ, 𝐵௡ିଵ, 𝑇 െ 𝑡௡ିଵ, 𝐸ሾ𝑣ሺ𝑡௡ିଵሻ|𝐵௡ିଵሿሻ  

൅𝑤ෝ௡ିଵ𝐻௣ሺ𝐵௡ିଵ, 𝐵௡ିଵ െ 𝛾, 𝑇 െ 𝑡௡ିଵ, 𝐸ሾ𝑣ሺ𝑡௡ିଵሻ|𝐵௡ିଵሿሻ,      (12) 

െ1 ൌ Δ௣ሺ𝐵௡ିଵ, 𝑋, 𝑇 െ 𝑡௡ିଵ, 𝐸ሾ𝑣ሺ𝑡௡ିଵሻ|𝐵௡ିଵሿሻ  

൅𝑤௡ିଵΔ௣ሺ𝐵௡ିଵ, 𝐵௡ିଵ, 𝑇 െ 𝑡௡ିଵ, 𝐸ሾ𝑣ሺ𝑡௡ିଵሻ|𝐵௡ିଵሿሻ  

൅𝑤ෝ௡ିଵΔ௣ሺ𝐵௡ିଵ, 𝐵௡ିଵ െ 𝛾, 𝑇 െ 𝑡௡ିଵ, 𝐸ሾ𝑣ሺ𝑡௡ିଵሻ|𝐵௡ିଵሿሻ,       (13) 

0 ൌ 𝜐௣ሺ𝐵௡ିଵ, 𝑋, 𝑇 െ 𝑡௡ିଵ, 𝐸ሾ𝑣ሺ𝑡௡ିଵሻ|𝐵௡ିଵሿሻ  
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൅𝑤௡ିଵ𝜐௣ሺ𝐵௡ିଵ, 𝐵௡ିଵ, 𝑇 െ 𝑡௡ିଵ, 𝐸ሾ𝑣ሺ𝑡௡ିଵሻ|𝐵௡ିଵሿሻ  

൅𝑤ෝ௡ିଵ𝜐௣ሺ𝐵௡ିଵ, 𝐵௡ିଵ െ 𝛾, 𝑇 െ 𝑡௡ିଵ, 𝐸ሾ𝑣ሺ𝑡௡ିଵሻ|𝐵௡ିଵሿሻ,       (14) 

where 𝐻௣ሺ𝑆, 𝑋, 𝑇𝑀, 𝑣ሻ, Δ௣ሺ𝑆, 𝑋, 𝑇𝑀, 𝑣ሻ, and 𝜐௣ሺ𝑆, 𝑋, 𝑇𝑀, 𝑣ሻ denote the price, delta, 

and vega (partial differentiation of 𝐻௣ሺ𝑆, 𝑋, 𝑇𝑀, 𝑣ሻ with respect to the volatility, √𝑣) 

of the European put under the Heston model; at the critical stock price 𝐵௡ିଵ on the 

early exercise boundary, the payoff, delta, and vega of the target American put option 

are 𝑋 െ 𝐵௡ିଵ, –1 , and 0, respectively. The vega is zero because if the American put is 

exercised, its payoff (𝑋 െ 𝐵௡ିଵ) is independent of the stock return variance. We solve 

the critical stock price 𝐵௡ିଵ and the weights 𝑤௡ିଵ, 𝑤ෝ௡ିଵ based on the above three 

equations. The first step involves expressing 𝑤௡ିଵ and 𝑤ෝ௡ିଵ as functions of 𝐵௡ିଵ 

based on Equations (13) and (14). The next step is to incorporate the obtained functions 

of 𝑤௡ିଵ  and 𝑤ෝ௡ିଵ  into Equation (12). The final step entails determining the 

boundary root 𝐵௡ିଵ  through the application of the bisection method. In instances 

where the bisection method fails to solve a root, a brute force method is instead 

employed, which examines a sufficiently fine grid within the 𝑆-space to ascertain the 

solution. 

For 𝑡௡ିଶ, we add two more options that mature at 𝑡௡ିଵ in the SHP for matching 

the three required conditions; the process is repeated backwards for 𝑡௡ିଷ, 𝑡௡ିସ, ..., 𝑡଴. 

Since we always apply the SHP method to hedge and price an American option that is 

not yet early exercised at 𝑡଴ but can only be early exercised after 𝑡଴, it is a waste to 

solve the critical stock price 𝐵଴ at 𝑡଴, which is impossibly touched when we conduct 

the hedging analysis. Therefore, we instead match the early exercise boundary at a time 

point slightly later than 𝑡଴ , denoted as 𝑡̃଴ ൌ 𝑡଴ ൅ 0.0001 . The system of equations 

examined at 𝑡̃଴ is  

𝐵଴ െ 𝑋 ൌ 𝐻௣ሺ𝐵଴, 𝑋, 𝑇 െ 𝑡̃଴, 𝐸ሾ𝑣ሺ𝑡̃଴ሻ|𝐵଴ሿሻ  

൅𝑤௡ିଵ𝐻௣ሺ𝐵଴, 𝐵௡ିଵ, 𝑇 െ 𝑡̃଴, 𝐸ሾ𝑣ሺ𝑡̃଴ሻ|𝐵଴ሿሻ  

൅𝑤ෝ௡ିଵ𝐻௣ሺ𝐵଴, 𝐵௡ିଵ െ 𝛾, 𝑇 െ 𝑡̃଴, 𝐸ሾ𝑣ሺ𝑡̃଴ሻ|𝐵଴ሿሻ  

൅𝑤௡ିଶ𝐻௣ሺ𝐵଴, 𝐵௡ିଶ, 𝑡௡ିଵ െ 𝑡̃଴, 𝐸ሾ𝑣ሺ𝑡̃଴ሻ|𝐵଴ሿሻ  
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൅𝑤ෝ௡ିଶ𝐻௣ሺ𝐵଴, 𝐵௡ିଶ െ 𝛾, 𝑡௡ିଵ െ 𝑡̃଴, 𝐸ሾ𝑣ሺ𝑡̃଴ሻ|𝐵଴ሿሻ  

൅ ⋯  

൅𝑤ଵ𝐻௣ሺ𝐵଴, 𝐵ଵ, 𝑡ଶ െ 𝑡଴෥ , 𝐸ሾ𝑣ሺ𝑡̃଴ሻ|𝐵଴ሿሻ  

൅𝑤ෝଵ𝐻௣ሺ𝐵଴, 𝐵ଵ െ 𝛾, 𝑡ଶ െ 𝑡̃଴, 𝐸ሾ𝑣ሺ𝑡̃଴ሻ|𝐵଴ሿሻ  

൅𝑤଴𝐻௣ሺ𝐵଴, 𝐵଴, 𝑡ଵ െ 𝑡̃଴, 𝐸ሾ𝑣ሺ𝑡̃଴ሻ|𝐵଴ሿሻ  

൅𝑤ෝ଴𝐻௣ሺ𝐵଴, 𝐵଴ െ 𝛾, 𝑡ଵ െ 𝑡̃଴, 𝐸ሾ𝑣ሺ𝑡̃଴ሻ|𝐵଴ሿሻ,     (15) 

െ1 ൌ Δ௣ሺ𝐵଴, 𝑋, 𝑇 െ 𝑡̃଴, 𝐸ሾ𝑣ሺ𝑡̃଴ሻ|𝐵଴ሿሻ  

൅𝑤௡ିଵΔ௣ሺ𝐵଴, 𝐵௡ିଵ, 𝑇 െ 𝑡̃଴, 𝐸ሾ𝑣ሺ𝑡̃଴ሻ|𝐵଴ሿሻ  

൅𝑤ෝ௡ିଵΔ௣ሺ𝐵଴, 𝐵௡ିଵ െ 𝛾, 𝑇 െ 𝑡̃଴, 𝐸ሾ𝑣ሺ𝑡̃଴ሻ|𝐵଴ሿሻ  

൅𝑤௡ିଶΔ௣ሺ𝐵଴, 𝐵௡ିଶ, 𝑡௡ିଵ െ 𝑡̃଴, 𝐸ሾ𝑣ሺ𝑡̃଴ሻ|𝐵଴ሿሻ  

൅𝑤ෝ௡ିଶΔ௣ሺ𝐵଴, 𝐵௡ିଶ െ 𝛾, 𝑡௡ିଵ െ 𝑡̃଴, 𝐸ሾ𝑣ሺ𝑡̃଴ሻ|𝐵଴ሿሻ  

൅ ⋯  

൅𝑤ଵΔ௣ሺ𝐵଴, 𝐵ଵ, 𝑡ଶ െ 𝑡଴෥ , 𝐸ሾ𝑣ሺ𝑡̃଴ሻ|𝐵଴ሿሻ  

൅𝑤ෝଵΔ௣ሺ𝐵଴, 𝐵ଵ െ 𝛾, 𝑡ଶ െ 𝑡̃଴, 𝐸ሾ𝑣ሺ𝑡̃଴ሻ|𝐵଴ሿሻ  

൅𝑤଴Δ௣ሺ𝐵଴, 𝐵଴, 𝑡ଵ െ 𝑡̃଴, 𝐸ሾ𝑣ሺ𝑡̃଴ሻ|𝐵଴ሿሻ  

൅𝑤ෝ଴Δ௣ሺ𝐵଴, 𝐵଴ െ 𝛾, 𝑡ଵ െ 𝑡̃଴, 𝐸ሾ𝑣ሺ𝑡̃଴ሻ|𝐵଴ሿሻ, (16) 

0 ൌ 𝜐௣ሺ𝐵଴, 𝑋, 𝑇 െ 𝑡̃଴, 𝐸ሾ𝑣ሺ𝑡̃଴ሻ|𝐵଴ሿሻ  

൅𝑤௡ିଵ𝜐௣ሺ𝐵଴, 𝐵௡ିଵ, 𝑇 െ 𝑡̃଴, 𝐸ሾ𝑣ሺ𝑡̃଴ሻ|𝐵଴ሿሻ  

൅𝑤ෝ௡ିଵ𝜐௣ሺ𝐵଴, 𝐵௡ିଵ െ 𝛾, 𝑇 െ 𝑡̃଴, 𝐸ሾ𝑣ሺ𝑡̃଴ሻ|𝐵଴ሿሻ  

൅𝑤௡ିଶ𝜐௣ሺ𝐵଴, 𝐵௡ିଶ, 𝑡௡ିଵ െ 𝑡̃଴, 𝐸ሾ𝑣ሺ𝑡̃଴ሻ|𝐵଴ሿሻ  
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൅𝑤ෝ௡ିଶ𝜐௣ሺ𝐵଴, 𝐵௡ିଶ െ 𝛾, 𝑡௡ିଵ െ 𝑡̃଴, 𝐸ሾ𝑣ሺ𝑡̃଴ሻ|𝐵଴ሿሻ  

൅ ⋯  

൅𝑤ଵ𝜐௣ሺ𝐵଴, 𝐵ଵ, 𝑡ଶ െ 𝑡଴෥ , 𝐸ሾ𝑣ሺ𝑡̃଴ሻ|𝐵଴ሿሻ  

൅𝑤ෝଵ𝜐௣ሺ𝐵଴, 𝐵ଵ െ 𝛾, 𝑡ଶ െ 𝑡̃଴, 𝐸ሾ𝑣ሺ𝑡̃଴ሻ|𝐵଴ሿሻ  

൅𝑤଴𝜐௣ሺ𝐵଴, 𝐵଴, 𝑡ଵ െ 𝑡̃଴, 𝐸ሾ𝑣ሺ𝑡̃଴ሻ|𝐵଴ሿሻ  

൅𝑤ෝ଴𝜐௣ሺ𝐵଴, 𝐵଴ െ 𝛾, 𝑡ଵ െ 𝑡̃଴, 𝐸ሾ𝑣ሺ𝑡̃଴ሻ|𝐵଴ሿሻ, (17) 

Here we continue to use the 𝐵଴  notation for convenience, but 𝐵଴  is actually the 

critical stock price on the early exercise boundary at 𝑡̃଴ . The same logic should be 

applied to interpret 𝑤଴ and 𝑤ෝ଴. The above backward iteration process to construct our 

SHP is illustrated in Table 1. 

[Table 1 should be here] 

After solving all the unknowns 𝐵௜, 𝑤௜, 𝑤ෝ௜ at 𝑛 different time points, the value 

of the SHP at 𝑡଴, 𝑃௡
ௌு௉ሺ𝑡଴ሻ can be expressed as 

𝑃௡
ௌு௉ሺ𝑡଴ሻ ൌ 𝐻௣ሺ𝑆ሺ𝑡଴ሻ, 𝑋, 𝑇 െ 𝑡଴, 𝑣ሺ𝑡଴ሻሻ  

൅𝑤௡ିଵ𝐻௣ሺ𝑆ሺ𝑡଴ሻ, 𝐵௡ିଵ, 𝑇 െ 𝑡଴, 𝑣ሺ𝑡଴ሻሻ  

൅𝑤ෝ௡ିଵ𝐻௣ሺ𝑆ሺ𝑡଴ሻ, 𝐵௡ିଵ െ 𝛾, 𝑇 െ 𝑡଴, 𝑣ሺ𝑡଴ሻሻ  

൅𝑤௡ିଶ𝐻௣ሺ𝑆ሺ𝑡଴ሻ, 𝐵௡ିଶ, 𝑡௡ିଵ െ 𝑡଴, 𝑣ሺ𝑡଴ሻሻ  

൅𝑤ෝ௡ିଶ𝐻௣ሺ𝑆ሺ𝑡଴ሻ, 𝐵௡ିଶ െ 𝛾, 𝑡௡ିଵ െ 𝑡଴, 𝑣ሺ𝑡଴ሻሻ  

൅ ⋯ 

൅𝑤ଵ𝐻௣ሺ𝑆ሺ𝑡଴ሻ, 𝐵ଵ, 𝑡ଶ െ 𝑡଴, 𝑣ሺ𝑡଴ሻሻ  

൅𝑤ෝଵ𝐻௣ሺ𝑆ሺ𝑡଴ሻ, 𝐵ଵ െ 𝛾, 𝑡଴ െ 𝑡଴, 𝑣ሺ𝑡଴ሻሻ  
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൅𝑤଴𝐻௣ሺ𝑆ሺ𝑡଴ሻ, 𝐵଴, 𝑡ଵ െ 𝑡଴, 𝑣ሺ𝑡଴ሻሻ  

൅𝑤ෝ଴𝐻௣ሺ𝑆ሺ𝑡଴ሻ, 𝐵଴ െ 𝛾, 𝑡ଵ െ 𝑡଴, 𝑣ሺ𝑡଴ሻሻ.              (18) 

3.2 Simulated Method for Conditional Expectation of Variance 

Regarding the conditional expected variance, it is theoretically possible to determine 

the probability density function of the conditional variance if one knows the transition 

probability function 𝜙ሺ𝑆ሺ𝑡ሻ, 𝑣ሺ𝑡ሻ|𝑆ሺ𝑡଴ሻ, 𝑣ሺ𝑡଴ሻሻ . This can be achieved through the 

following equation: 

𝜙ሺ𝑣ሺ𝑡ሻ|𝑆ሺ𝑡ሻሻ ൌ థሺௌሺ௧ሻ,௩ሺ௧ሻ|ௌሺ௧బሻ,௩ሺ௧బሻሻ

థሺௌሺ௧ሻ|ௌሺ௧బሻ,௩ሺ௧బሻሻ
ൌ థሺௌሺ௧ሻ,௩ሺ௧ሻ|ௌሺ௧బሻ,௩ሺ௧బሻሻ

׬ థሺௌሺ௧ሻ,௩ሺ௧ሻ|ௌሺ௧బሻ,௩ሺ௧బሻሻௗ௩ሺ௧ሻ
ಮ

బ
.     (19) 

Subsequently, the conditional expected variance can be derived as  

𝐸ሾ𝑣ሺ𝑡ሻ|𝑆ሺ𝑡ሻሿ ൌ ׬ 𝑣ሺ𝑡ሻ𝜙ሺ𝑣ሺ𝑡ሻ|𝑆ሺ𝑡ሻሻ𝑑𝑣ሺ𝑡ሻ
ஶ

଴ .             (20) 

Dragulescu and Yakovenko (2002) successfully combine the inverse Fourier and 

Laplace transformations to derive the transition probability function 

𝜙ሺ𝑆ሺ𝑡ሻ, 𝑣ሺ𝑡ሻ|𝑆ሺ𝑡଴ሻ, 𝑣ሺ𝑡଴ሻሻ  under the Heston (1993) model. Consequently, by 

numerically integrating the denominator of Equation (19) and Equation (20), one can 

obtain 𝐸ሾ𝑣ሺ𝑡ሻ|𝑆ሺ𝑡ሻሿ. However, preliminary tests reveal that this method is not only 

excessively complex in a methodological sense, but also results in lengthy computation 

times for the backward induction described in the previous section.  

One feasible way to estimate the most likely variance on the boundary at time 𝑡௜, 

𝐸ሾ𝑣ሺ𝑡௜ሻ|𝐵௜ሿ is through simulation. We first simulate, for example, 15000 paths of stock 

price and variance with a time step of 5 ൈ 10ିହ based on the Heston model. Then we 

cluster the stock prices at time 𝑡௜ according to a set of price intervals, where the stock 

prices are spaced, for example, by 5% of the initial stock price 𝑆ሺ𝑡଴ሻ. After that, we 

calculate the average price and average corresponding variance in each cluster, i.e., 𝑆௝̅ 

and 𝑣̅௝ for 𝑗 ൌ 1, 2, …, which are then employed to estimate the conditional expected 

variance specifically at 𝑆௝̅  as 𝐸ൣ𝑣ሺ𝑡௜ሻ|𝑆௝̅൧ ൌ 𝑣̅௝  for each cluster. Finally, we 
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implement the piece-wise linear interpolation across all clusters (the linear 

extrapolation based on the two outermost clusters at each end) to obtain the most likely 

variance conditional on any value of 𝐵௜. 

However, this workaround has a few disadvantages. First, it is time-consuming to 

simulate so many price and variance paths. Second, as the time draws nearer to 𝑡଴, the 

early exercise boundary of the American put (call) option falls (rises) deeply, but fewer 

price paths can cross the early exercise boundary. Therefore, the estimated conditional 

expected variance near the early exercise boundary close to 𝑡଴ is unreliable. In Panel 

A of Figure 1, since the price range for the simulated stock paths is wide enough at 

𝑡௡ିଵ ൌ 5/12 , we observe a substantial portion on which to apply piece-wise 

interpolation to estimate 𝐸ሾ𝑣ሺ𝑡௡ିଵሻ|𝑆ሺ𝑡௡ିଵሻሿ. In contrast, in Panel B of Figure 1, since 

the price range for the simulated stock paths is narrow at 𝑡ଵ ൌ 1/12, we must use the 

linear extrapolation to generate less reliable estimations when the stock price is 

relatively low (the case for solving the early exercise boundary of American puts) and 

high (the corresponding case for American calls). 

[Figure 1 should be here] 

3.3 Efficient Methods for Conditional Expectation of Variance 

To avoid the drawbacks of the above-mentioned simulation method, in this section we 

propose two methods by which to efficiently approximate the conditional expectation 

of variance that can be combined with the proposed SHP method under the SV model. 

First, we apply the Ito’s lemma to Equation (6) to obtain 

 𝑑 ln 𝑆ሺ𝑡ሻ ൌ ቀ𝑟 െ 𝑞 െ ௩ሺ௧ሻ

ଶ
ቁ 𝑑𝑡 ൅ ඥ𝑣ሺ𝑡ሻ𝑑𝑊ሺ𝑡ሻ, (21) 

after which we consider the discrete-time counterparts of Equations (21), (7), and (8):  

 Δ ln 𝑆ሺ𝑡ሻ ൌ ቀ𝑟 െ 𝑞 െ ௩ሺ௧ሻ

ଶ
ቁ Δ𝑡 ൅ ඥ𝑣ሺ𝑡ሻΔ𝑊ሺ𝑡ሻ, (22) 

 Δ𝑣ሺ𝑡ሻ ൌ 𝜅ሾ𝜃 െ 𝑣ሺ𝑡ሻሿΔ𝑡 ൅ 𝜎௩ඥ𝑣ሺ𝑡ሻΔ𝑍ሺ𝑡ሻ,            (23) 
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Δ𝑍ሺ𝑡ሻ ൌ 𝜌Δ𝑊ሺ𝑡ሻ ൅ 𝜖ඥሺ1 െ 𝜌ଶሻΔ𝑡.                 (24) 

In the first efficient method, we utilize the Euler discretization to approximate the 

evolution of the stock price and variance processes, with the assumption that there is 

only one time step between 𝑡଴  and any time point 𝑡௜ . Therefore, the conditional 

expectation of the variance at 𝑡௜ can be expressed as 

𝐸ሾ𝑣ሺ𝑡௜ሻ|𝑆ሺ𝑡௜ሻሿ ൌ 𝐸ሾ𝑣ሺ𝑡଴ሻ ൅ Δ𝑣ሺ𝑡଴ሻ|𝑆ሺ𝑡௜ሻሿ ൌ 𝑣ሺ𝑡଴ሻ ൅ 𝐸ሾΔ𝑣ሺ𝑡଴ሻ|𝑆ሺ𝑡௜ሻሿ.  (25) 

According to Equation (23), we further approximate 𝐸ሾΔ𝑣ሺ𝑡଴ሻ|𝑆ሺ𝑡௜ሻሿ as  

𝐸ሾΔ𝑣ሺ𝑡଴ሻ|𝑆ሺ𝑡௜ሻሿ ൌ 𝐸ൣ𝜅ሾ𝜃 െ 𝑣ሺ𝑡଴ሻሿሺ𝑡௜ െ 𝑡଴ሻ ൅ 𝜎௩ඥ𝑣ሺ𝑡଴ሻሺ𝑍ሺ𝑡௜ሻ െ 𝑍ሺ𝑡଴ሻሻ|𝑆ሺ𝑡௜ሻ൧  

ൌ 𝜅ሾ𝜃 െ 𝑣ሺ𝑡଴ሻሿሺ𝑡௜ െ 𝑡଴ሻ ൅ 𝜎௩ඥ𝑣ሺ𝑡଴ሻ𝐸ሾ𝑍ሺ𝑡௜ሻ െ 𝑍ሺ𝑡଴ሻ|𝑆ሺ𝑡௜ሻሿ.   (26) 

In addition, we rewrite Equation (24) as 

𝑍ሺ𝑡௜ሻ െ 𝑍ሺ𝑡଴ሻ ൌ 𝜌൫𝑊ሺ𝑡௜ሻ െ 𝑊ሺ𝑡଴ሻ൯ ൅ 𝜖ඥሺ1 െ 𝜌ଶሻΔ𝑡; 

given 𝑆ሺ𝑡௜ሻ is known, we approximate the spot innovation to be 

 𝑊ሺ𝑡௜ሻ െ 𝑊ሺ𝑡଴ሻ ൌ
୪୬ ௌሺ௧೔ሻି୪୬ ௌሺ௧బሻିቀ௥ି௤ିೡሺ೟బሻ

మ
ቁሺ௧೔ି௧బሻ

ඥ௩ሺ௧బሻ
  (27) 

according to Equation (22). Finally, combining everything into Equation (26) yields  

𝐸ሾΔ𝑣ሺ𝑡଴ሻ|𝑆ሺ𝑡௜ሻሿ ൌ 𝜅ሾ𝜃 െ 𝑣ሺ𝑡଴ሻሿሺ𝑡௜ െ 𝑡଴ሻ  

൅𝜎௩ඥ𝑣ሺ𝑡଴ሻ𝐸ൣ𝜌൫𝑊ሺ𝑡௜ሻ െ 𝑊ሺ𝑡଴ሻ൯ ൅ 𝜖ඥሺ1 െ 𝜌ଶሻΔ𝑡|𝑆ሺ𝑡௜ሻ൧  

ൌ 𝜅ሾ𝜃 െ 𝑣ሺ𝑡଴ሻሿሺ𝑡௜ െ 𝑡଴ሻ 

൅𝜎௩ඥ𝑣ሺ𝑡଴ሻ𝜌
୪୬ ௌሺ௧೔ሻି୪୬ ௌሺ௧బሻିቀ௥ି௤ିೡሺ೟బሻ

మ
ቁሺ௧೔ି௧బሻ

ඥ௩ሺ௧బሻ
             (28) 

due to the independence of 𝜖 from Δ𝑊ሺ𝑡ሻ; thus 𝐸ሾ𝜖|𝑆ሺ𝑡௜ሻሿ ൌ 0. 

Hence we have the approximated conditional expectation of the variance at 𝑡௜: 
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𝐸ሾ𝑣ሺ𝑡௜ሻ|𝑆ሺ𝑡௜ሻሿ ൌ 𝑣ሺ𝑡଴ሻ ൅ 𝜅ሾ𝜃 െ 𝑣ሺ𝑡଴ሻሿሺ𝑡௜ െ 𝑡଴ሻ  

൅𝜌𝜎௩ ቂln ௌሺ௧೔ሻ

ௌሺ௧బሻ
െ ቀ𝑟 െ 𝑞 െ ௩ሺ௧బሻ

ଶ
ቁ ሺ𝑡௜ െ 𝑡଴ሻቃ.        (29) 

The conditional expected variance estimation method outlined in Equation (29) is 

straightforward and convenient. In terms of computational efficiency for calculating 

𝐸ሾ𝑣ሺ𝑡௜ሻ|𝑆ሺ𝑡௜ሻሿ, the method described in equation (29) significantly outperforms Monte 

Carlo simulation combined with the piecewise linear interpolation and extrapolation. 

However, it inherently carries bias due to its neglect of the path-dependent nature of the 

SV model within the time interval between 𝑡଴  and any time point 𝑡௜ . This error 

accumulates as 𝑡௜ grows.  

    Although the accuracy of the Euler discretization might raise concerns, in this 

paper we propose a second efficient method to enhance the approximation of the 

conditional expectation of variance by taking into account the time-dependent property 

of the variance to some extent in the stochastic variance model. To accomplish this, we 

employ the concept of drift interpolation proposed in van Haastrecht and Pelsser (2010) 

to approximate ׬ 𝑣ሺ𝜏ሻ𝑑𝜏
௧೔

௧బ
 as 

௩ሺ௧೔ሻା௩ሺ௧బሻ

ଶ
ሺ𝑡௜ െ 𝑡଴ሻ. In addition, we further fix 𝑣ሺ𝜏ሻ as 

𝑣ሺ𝑡଴ሻ  when evaluating ׬ ඥ𝑣ሺ𝜏ሻ𝑑𝑊ሺ𝜏ሻ௧೔

௧బ
 and ׬ ඥ𝑣ሺ𝜏ሻ𝑑𝑍ሺ𝜏ሻ௧೔

௧బ
. Consequently, 

integrating Equation (21) over time, we have 

ln ௌሺ௧೔ሻ

ௌሺ௧బሻ
ൌ ׬ ቀ𝑟 െ 𝑞 െ ௩ሺఛሻ

ଶ
ቁ 𝑑𝜏

௧೔

௧బ
൅ ׬ ඥ𝑣ሺ𝜏ሻ𝑑𝑊ሺ𝜏ሻ௧೔

௧బ
  

 ൌ ሺ𝑟 െ 𝑞ሻሺ𝑡௜ െ 𝑡଴ሻ െ ଵ

ଶ
׬ 𝑣ሺ𝜏ሻ𝑑𝜏

௧೔

௧బ
൅ ׬ ඥ𝑣ሺ𝜏ሻ𝑑𝑊ሺ𝜏ሻ௧೔

௧బ
  

ൌ ሺ𝑟 െ 𝑞ሻሺ𝑡௜ െ 𝑡଴ሻ െ ଵ

ଶ
ቀ௩ሺ௧೔ሻା௩ሺ௧బሻ

ଶ
ቁ ሺ𝑡௜ െ 𝑡଴ሻ ൅ ඥ𝑣ሺ𝑡଴ሻ ׬ 𝑑𝑊ሺ𝜏ሻ௧೔

௧బ
  

ൌ ሺ𝑟 െ 𝑞ሻሺ𝑡௜ െ 𝑡଴ሻ െ ଵ

ଶ
ቀ௩ሺ௧೔ሻା௩ሺ௧బሻ

ଶ
ቁ ሺ𝑡௜ െ 𝑡଴ሻ ൅ ඥ𝑣ሺ𝑡଴ሻ൫𝑊ሺ𝑡௜ሻ െ 𝑊ሺ𝑡଴ሻ൯. (30) 

Similarly, integrating Equation (7) over time yields 
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𝑣ሺ𝑡௜ሻ െ 𝑣ሺ𝑡଴ሻ ൌ ׬ 𝜅ሾ𝜃 െ 𝑣ሺ𝜏ሻሿ𝑑𝜏
௧೔

௧బ
൅ ׬ 𝜎௩ඥ𝑣ሺ𝜏ሻ𝑑𝑍ሺ𝜏ሻ

௧೔

௧బ
  

ൌ 𝜅𝜃ሺ𝑡௜ െ 𝑡଴ሻ െ 𝜅 ׬ 𝑣ሺ𝜏ሻ𝑑𝜏
௧೔

௧బ
൅ 𝜎௩ ׬ ඥ𝑣ሺ𝜏ሻ𝑑𝑍ሺ𝜏ሻ

௧೔

௧బ
  

ൌ 𝜅𝜃ሺ𝑡௜ െ 𝑡଴ሻ െ 𝜅 ቀ௩ሺ௧೔ሻା௩ሺ௧బሻ

ଶ
ቁ ሺ𝑡௜ െ 𝑡଴ሻ ൅ 𝜎௩ඥ𝑣ሺ𝑡଴ሻ ׬ 𝑑𝑍ሺ𝜏ሻ௧೔

௧బ
  

ൌ 𝜅𝜃ሺ𝑡௜ െ 𝑡଴ሻ െ 𝜅 ቀ௩ሺ௧೔ሻା௩ሺ௧బሻ

ଶ
ቁ ሺ𝑡௜ െ 𝑡଴ሻ ൅ 𝜎௩ඥ𝑣ሺ𝑡଴ሻ൫𝑍ሺ𝑡௜ሻ െ 𝑍ሺ𝑡଴ሻ൯.  (31) 

Since Equation (30) implies  

 𝑊ሺ𝑡௜ሻ െ 𝑊ሺ𝑡଴ሻ ൌ
୪୬

ೄ൫೟೔൯
ೄሺ೟బሻି൤௥ି௤ିభ

మ
൬

ೡ൫೟೔൯శೡሺ೟బሻ
మ

൰൨ሺ௧೔ି௧బሻ

ඥ௩ሺ௧బሻ
, (32) 

we rewrite Equation (31) as 

𝑣ሺ𝑡௜ሻ െ 𝑣ሺ𝑡଴ሻ ൌ 𝜅𝜃ሺ𝑡௜ െ 𝑡଴ሻ െ 𝜅 ቀ௩ሺ௧೔ሻା௩ሺ௧బሻ

ଶ
ቁ ሺ𝑡௜ െ 𝑡଴ሻ  

൅𝜎௩ඥ𝑣ሺ𝑡଴ሻ൫𝜌൫𝑊ሺ𝑡௜ሻ െ 𝑊ሺ𝑡଴ሻ൯ ൅ 𝜖ඥሺ1 െ 𝜌ଶሻሺ𝑡௜ െ 𝑡଴ሻ൯  

ൌ 𝜅𝜃ሺ𝑡௜ െ 𝑡଴ሻ െ 𝜅 ቀ௩ሺ௧೔ሻା௩ሺ௧బሻ

ଶ
ቁ ሺ𝑡௜ െ 𝑡଴ሻ  

൅𝜎௩ඥ𝑣ሺ𝑡଴ሻ ൝𝜌
୪୬

ೄ൫೟೔൯
ೄሺ೟బሻି൤௥ି௤ିభ

మ
൬

ೡ൫೟೔൯శೡሺ೟బሻ
మ

൰൨ሺ௧೔ି௧బሻ

ඥ௩ሺ௧బሻ
൅ 𝜖ඥሺ1 െ 𝜌ଶሻሺ𝑡௜ െ 𝑡଴ሻൡ. (33) 

Therefore,  

𝑣ሺ𝑡௜ሻ ቂ1 ൅ ሺ఑

ଶ
െ ఘఙೡ

ସ
ሻሺ𝑡௜ െ 𝑡଴ሻቃ ൌ 𝑣ሺ𝑡଴ሻ ൅ 𝜅𝜃ሺ𝑡௜ െ 𝑡଴ሻ െ 𝜅 ௩ሺ௧బሻ

ଶ
ሺ𝑡௜ െ 𝑡଴ሻ  

൅𝜌𝜎௩ ቂln ௌሺ௧೔ሻ

ௌሺ௧బሻ
െ ቀ𝑟 െ 𝑞 െ ௩ሺ௧బሻ

ସ
ቁ ሺ𝑡௜ െ 𝑡଴ሻቃ  

൅𝜖𝜎௩ඥ𝑣ሺ𝑡଴ሻඥሺ1 െ 𝜌ଶሻሺ𝑡௜ െ 𝑡଴ሻ.         (34) 
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Finally, by taking the expectation conditional on 𝑆ሺ𝑡௜ሻ  on both sides of the above 

equation, we obtain the second efficient approximations for the conditional expectation 

of the variance: 

𝐸ሾ𝑣ሺ𝑡௜ሻ|𝑆ሺ𝑡௜ሻሿ ൌ
௩ሺ଴ሻାቀ఑ఏି఑ೡሺ೟బሻ

మ
ቁሺ௧೔ି௧బሻାఘఙೡ൤୪୬

ೄ൫೟೔൯
ೄሺ೟బሻିቀ௥ି௤ିೡሺ೟బሻ

ర
ቁሺ௧೔ି௧బሻ൨

ଵାሺഉ
మ

ିഐ഑ೡ
ర

ሻሺ௧೔ି௧బሻ
.    (35) 

4. Numerical Results 

This section analyzes the pricing and hedging performance of the three methods for 

calculating the conditional expected variance. Moreover, we focus on the degree of 

performance improvement caused by introducing the vega-matching condition. As a 

robustness test, we also investigate the impact of constructing the SHP portfolio using 

only European puts with standard strike prices rather than arbitrary strike prices. 

4.1 Pricing Performance Analysis 

We first compare the pricing performance of the SHP method with the Euler-method 

conditional expectation variance (Method 1∗), drift-interpolated conditional expected 

variance (Method 2∗ ), and simulated conditional expected variance (Method 3∗ ). 

Additionally, the counterpart no-vega-matching models—Method 1 , Method 2  and 

Method 3 —are also included for comparison to determine whether the vega-match 

condition is worth considering. When there is no vega-matching condition, it is not 

necessary to add 𝑤ෝ௜ units of European puts with the strike price to 𝐵௜ െ 𝛾 into the 

SHP; thus our SHP method degenerates to Chung and Shih’s (2009) SHP method except 

that the constant variance used in Chung and Shih’s (2009) SHP method is replaced 

with the conditional expected variance.  

Two sets of American puts are examined, where the size of the first set is small, 

appropriate for detailed analyses, and the other set of American put contracts is large 

and randomly generated, used to measure the average performance of our SHP method 

when it is used in the real world. Finally, the FDM is employed to calculate the 

benchmark, where the grid sizes in time and variance are 5 ൈ 10ିହ  and 0.005 , 

respectively. 
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The parameter values of American puts in Set 1 are 𝑆ሺ𝑡଴ሻ ൌ 100, 𝑟 ൌ 0.05, 𝑇 ൌ

0.5 , 𝜎௩ ൌ 0.3 , 𝜅 ൌ 1 , 𝜃 ൌ 0.09 , 𝜌 ൌ െ0.7 , 3  𝑋 ൌ ሼ90,100,110ሽ , 𝑞 ∈

ሼ0.02,0.05,0.08ሽ , and 𝑣ሺ𝑡଴ሻ ∈ ሼ0.04,0.09,0.16ሽ . The detailed pricing results of the 

methods are presented in Table 2. When implementing the proposed SHP methods, 𝛾 ൌ

2.5  (2.5%ൈ 𝑆ሺ𝑡଴ሻ ) and 𝑛 ൌ 6 . The pricing results for the 27 contracts in Set 1 are 

presented in Table 2. Appendix A further takes the first contract in Table 2 as an example 

to show the detailed compositions of the SHPs in Methods 1∗, 2∗, and 3∗. When 𝑛 ൌ

6, Methods 1∗, 2∗, and 3∗ (Methods 1, 2, and 3) employ 13 (=1 ൅ 2𝑛) (7 (=1 ൅ 𝑛)) 

European puts to construct SHPs since one needs to consider only the conditional 

expected variance on the early exercise boundary. In contrast, suppose that one would 

like to apply Fink’s (2003) method with four representative variances given the early 

exercise boundary of the target American put able to be known in advance, he may need 

25 (=1 ൅ 4𝑛) European puts to construct the SHP for implementing the value-matching 

condition on the early exercise boundary. If one also implements the smooth-pasting 

and vega-matching conditions, he may need 73 (=1 ൅ 12𝑛) European puts to construct 

the SHP. In practice, it is unreasonable to hedge one target options with 73 more 

fundamental options and it is also infeasible since there may not exist so many out-of-

the-money European puts with different times to maturity in the option market. 

Table 3 shows the root of mean squared error (RMSE) for the pricing results in 

Table 2. Panel A of Table 3 shows that simulation (Methods 3∗ and 3) performs the 

best, followed by drift interpolation (Methods 2∗  and 2 ), followed by the Euler 

method (Methods 1∗ and 1). In addition, the implementation of the vega-matching 

condition yields a substantial reduction in the RMSE. The reductions are quantified by 

66.8%, 77.4%, and 73.3% respectively, for Methods 1∗, 2∗, and 3∗, highlighting the 

importance of considering the vega-matching condition. Although Methods 1∗ and 2∗, 

which approximate the conditional expected variance efficiently, do not perform as well 

as Method 3∗, the pricing performance of Methods 1∗ and 2∗ is still impressive. The 

RMSEs of Method 1∗ and 2∗ are 0.0115 and 0.0061, both of which are extremely 

small and representing only 0.13% and 0.07% of the average option value of Set 1 

 
3 We argue that 𝜌 ൌ െ0.7 is not an extreme assumption. According to Hung, Ko, and Wang (2023), 𝜌 
ranges in [-0.84, -0.74] for S&P 500 index in 1996-2017. 
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(8.8041), respectively. In addition, Panel B of Table 3 presents the RMSEs under 𝑟 ൒

𝑞  and 𝑟 ൏ 𝑞 . Note that in instances where 𝑟 ൒ 𝑞 , we still observe a substantial 

reduction in RMSE for Methods 1∗ , 2∗ , and 3∗  (vs. Methods 1 , 2 , and 3 ), 

quantified by 66.7%, 77.6%, and 74.0% respectively; however, when 𝑟 ൏ 𝑞, there is 

no substantial difference in RMSE regardless of whether the vega-matching condition 

is used or not. It is well-known thon the early exercise boundary for 𝑟 ൒ 𝑞 is higher 

than that for 𝑟 ൏ 𝑞, while all else being held the same. The results in Panel B of Table 

3 suggest that when 𝑟 ൒ 𝑞, where the current stock price is closer to the early exercise 

boundary and thus it is likely to early exercise an American put, the proposed SHP 

methods perform satisfactorily, and the vega-matching condition is more effective in 

this scenario. In fact, when 𝑟 ൏ 𝑞, where the current stock price is further away from 

the early exercise boundary, the probability of early exercise is smaller, and the 

American put is more likely to resemble its European counterpart with the same strike 

price and time to maturity. As a result, it is of little use to consider the vega-matching 

condition on the early exercise boundary or even the proposed SHP methods: the issuer 

(hedger) can achieve still satisfactory but cheaper hedging by using only the counterpart 

European put, since for the contracts with 𝑟 ൏ 𝑞 in Set 1, the RMSE between the target 

American puts and the counterpart European puts is merely 0.0029. In Panel C of Table 

3, we conduct a subsample analysis in terms of 𝑣ሺ𝑡଴ሻ. Although Method 3∗ generally 

perform the best, Method 2∗ outperforms Method 3∗ by a very small difference when 

𝑣ሺ𝑡଴ሻ is 0.09 and 0.16, and maybe due to the uncertainty nature associated with the 

simulation approach, the RMSE of Method 3∗ (with vega matching) is higher than that 

of Method 3 (without vega matching) when 𝑣ሺ𝑡଴ሻ ൌ 0.16. 

[Table 2 should be here] 

[Table 3 should be here] 

The basic idea of the SHP method implies that when the hedging time points 𝑛 

increases, the portfolio value should converge to the theoretical value of the target 

option. However, we modify the SHP by introducing the approximated conditional 

expected variance under the Heston’s SV model. Therefore, we are interested in 

whether convergence occurs when 𝑛 increases. Here we analyze the RMSPE (root of 
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mean squared percentage error) among 27 contracts in Set 1 given different values of 

𝑛 to examine the convergence property of Methods 1∗ vs. 1 and Method 2∗ vs. 2. 

For each panel in Figure 2, given a different 𝑛, in addition to reporting the figure of the 

RMSPE among 27 contracts in Set 1 and marking it with a solid circle, the top of the 

vertical line, the top of the vertical bar, the bottom of the vertical bar, and the bottom of 

the vertical line represent the maximum, 75% quantile, 25% quantile, and minimum 

absolute percentage error among the 27 contracts in Set 1, respectively. Regardless of 

whether the vega-matching condition is considered or not, the proposed SHP methods 

converge quickly when 𝑛 ൌ 4 . However, non-vega-matching SHP methods are less 

reliable as their SHP option values begin to diverge from the FDM benchmark after 

𝑛 ൌ 4 . In addition, comparing the vertical line and bar for Methods 1∗  vs. 1 

(Methods 2∗ vs. 2), we find that the volatility of the RMSPEs among 27 contracts in 

Set 1 based on the SHP methods without vega matching (Panels B and D) are 

significantly higher and tend to increase with 𝑛. The results in Figure 2 demonstrate 

that if the vega-matching condition is imposed, even though the proposed SHP methods 

only examine one variance value—the conditional expected variance—the convergence 

pattern with respect to 𝑛 is largely unchanged.  

[Figure 2 should be here] 

    Note that in practice, European strike prices are not continuous. Therefore, 

European options with strike prices 𝐵௜ in the SHP may not exist in the market because 

𝐵௜ are not standard strike prices. We seek to test the proposed model by considering a 

more realistic constraint of trading only European options with standard strike prices. 

Therefore, in contrast to the above analyses, we assume that the existing strike prices 

are multiples of, say, 5% of the initial stock price and then examine the pricing and 

hedging performance of the demonstrated option contracts in Set 1. These experiments 

are more capable of reflecting how well the SHP replicates real-world American puts. 

To determine a standard-strike critical boundary (𝐵ሷ ௜ ), we consider only strike 

prices that are divisible by 5 (=5%ൈ 𝑆଴ ) and the set of Θ ൌ ሾ40,45, … ,95,100ሿ  to 

represent standard strike prices. We iteratively search from high to low for the 

appropriate critical boundary at time 𝑡௜. During this optimization process, we further 
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impose two additional constraints. At time 𝑡௡ିଵ , the optimization problem is 

formulated as  

 min  
𝐵ሷ ௡ିଵ, 𝑤௡ିଵ, 𝑤ෝ௡ିଵ

(error of value-matching condition at 𝑡௡ିଵ)2 

൅(error of smooth-matching condition at 𝑡௡ିଵ)2 

൅(error of vega-matching condition at 𝑡௡ିଵ)2 

s.t.  𝐵ሷ ௡ିଵ ∈ Θ, 𝐵ሷ௡ିଵ ൑ minሺ𝑋, ௥

௤
𝑋ሻ,                   (36) 

where minሺ𝑋, ௥

௤
𝑋ሻ is the theoretical early exercise boundary of an American put when 

the time is the maturity date 𝑇, and the errors of value-matching, smooth-pasting, and 

vega-matching conditions correspond to the mismatches between the left-hand- and 

right-hand-side of Equations (12), (13), and (14), respectively. For time 𝑡௜ other than 

𝑡௡ିଵ, the optimization problem is formulated as 

 min  
𝐵ሷ ௜, 𝑤௜, 𝑤ෝ௜

(error of value-matching condition at 𝑡௜)
2 

൅(error of smooth-matching condition at 𝑡௜)
2 

൅(error of vega-matching condition at 𝑡௜)
2 

s.t.  𝐵ሷ ௜ ∈ Θ,  𝐵ሷ ௜ ൑ 𝐵ሷ ௜ାଵ.                            (37) 

Moreover, when analyzing the constraints of using only standard strike prices, the 

parameter 𝛾 is set to the minimal interval between standard strike prices, i.e., 𝛾 ൌ 5 

in our experiments. The pricing results and corresponding analyses are presented in 

Tables 4 and 5, respectively. By comparing Table 5 with Table 3, the RMSEs increase 

avoidably since the standard strike prices for the European options in the SHP are not 

the exact solution when solving the value-matching, smooth-pasting, and vega-

matching conditions. Additionally, when using only standard strike prices, the methods 

with vega-matching remain superior: the vega-matching condition reduces RMSEs by 
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38.4%, 77.1%, and 21.5%, respectively for Methods 1∗ , 2∗ , and 3∗ , and this 

phenomenon is consistent in the scenarios where 𝑟 ൒ 𝑞. Moreover, the performance of 

Method 3∗ (the simulated method to approximate the conditional expected variance) 

seems to degrade more than Methods 1∗ and 2∗. In general, Method 2∗ performs the 

best, but Method 1∗ outperforms (slightly) Method 2∗ when 𝑣ሺ𝑡଴ሻ is 0.09 (0.16). 

 [Table 4 should be here] 

 [Table 5 should be here] 

Since the superior performance for the small group of contracts in Set 1 may not 

demonstrate the true ability of the proposed SHP methods, we randomly generate 600 

parameter combinations to test their pricing and hedging performance to demonstrate 

the robustness of the proposed SHP methods. To differentiate the 27 option contracts 

examined in Table 2, these 600 option contracts are referred to as Set 2.4 We intend to 

examine the proposed SHP methods under sufficiently many possibilities and measure 

the average pricing and hedging performance of the proposed SHP method to reflect 

the realistic condition for issuers who continuously adopt the proposed SHP methods 

to price and hedge American puts. We argue that it may not be proper to conduct an 

empirical study by examining several American put contracts traded in option markets. 

First, we particularly focus on the hedging performance of the proposed SHP methods, 

since there exist abundant models that have been proved to price American puts 

accurately. However, it is difficult to test the average or the distribution of hedging 

errors in practice, since there is only one time series for the underlying stock price 

during the option life. Second, it is always possible to select such contracts which suit 

the proposed SHP methods to exhibit excellent performance, which may not be 

translated to the practical performance of the proposed SHP methods in the real world.  

The examined parameter values in Set 2 are summarized in Table 6. For simplicity 

and also for the purposes of further analyses, we fix 𝑆ሺ𝑡଴ሻ ൌ 100, 𝑟 ൌ 0.05, and 𝜃 ൌ

 
4 We exclude one contract from Set 2 because it is early exercised at the current time point 𝑡଴, the details 
associated which are 𝑋 ൌ 110 , 𝑇 ൌ 1/12 , 𝑟 ൌ 0.05 , 𝑞 ൌ 0.014426 , 𝑣ሺ𝑡଴ሻ ൌ 0.036352 , 𝜅 ൌ
2.12351, 𝜃 ൌ 0.13, 𝜎௩ ൌ 0.341381, and 𝜌 ൌ െ0.61616. This is because the proposed SHP method 
is only applicable to American options that have not yet be early exercised at the current moment. 
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0.13 and examine 30 combinations of ሺ𝑋, 𝑇ሻ, where 𝑋 ∈ ሼ90,95,100,105,110ሽ and 

𝑇 ∈ ቄ ଵ

ଵଶ
, ଶ

ଵଶ
, ଷ

ଵଶ
, ସ

ଵଶ
, ହ

ଵଶ
, ଺

ଵଶ
ቅ. We randomly draw 20 sets of ሺ𝑞, 𝑣ሺ𝑡଴ሻ, 𝜅, 𝜎௩, 𝜌ሻ from each 

parameter’s individual uniform distribution within a reasonable range. Each 

combination of ሺ𝑋, 𝑇ሻ is combined with the simulated 20 sets of ሺ𝑞, 𝑣ሺ𝑡଴ሻ, 𝜅, 𝜎௩, 𝜌ሻ 

to form 20 examined contracts. Table 7 (Table 8) shows the pricing errors of different 

methods (using European puts with standard strike prices) for American puts in Set 2. 

[Table 6 should be here] 

[Table 7 should be here] 

[Table 8 should be here] 

In Panel A of Table 7, Method 2∗ is the best-performing method, the RMSE of 

which is 0.0072, representing only 0.09% of the average option value of Set 2 (7.7062). 

The SHP methods with vega matching continue to be more accurate for pricing 

American put options. Compared with Table 3, Method 3∗ performs comparatively 

worse for Set 2. We attribute this result to the theoretical drawback of the simulation 

approach to estimate the conditional expected variance at time points near today. By 

grouping and analyzing American puts with different maturities, we find that Method 

3∗ exhibits poor pricing capability for the shortest maturity; i.e., when maturity = 
ଵ

ଵଶ
 

in Set 2, it yields an RMSE of 0.0143, significantly larger than the RMSE of 0.0069 

(0.0055) based on Method 1∗ (Method 2∗). Similarly, in Panel B of Table 7, when 

𝑟 ൒ 𝑞 , the pricing errors of the SHP methods with the vega-matching condition 

(Methods 1∗, 2∗, and 3∗) are substantially lower than the SHP methods without the 

vega-matching conditions (Methods 1 , 2 , and 3 ), but the effect from the vega-

matching condition is minor when 𝑟 ൏ 𝑞. Last, Panel C of Table 7 attests the superior 

performance of Methods 2∗ given different levels of the initial variance, although for 

the medium levels of the initial variance, the pricing accuracy of Methods 2∗ and 3∗ 

is almost the same. 
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In Table 8, due to the constraint of using only European puts with standard strike 

prices to construct the SHPs, the pricing errors are evidently higher than the 

counterparts in Table 7. However, the pricing errors are still small, compared to the 

average option value. Taking Methods 2∗, the best performer, for example, its RMSE 

is 0.0820, representing only 1.1% of the average option value of Set 2 (7.7062). All the 

relative patterns among different methods and subsample analyses in Table 8 are similar 

to those in Table 7. 

4.2 Hedging Performance Analysis 

In this section, we discuss the core contribution of this paper, which is the hedging 

performance of the SHP methods from the viewpoint of American put issuers. The 

experiment design follows Chung, Huang, Shih, and Wang (2019). For each contract, 

we simulate 1000 stock price-variance paths based on Equations (22) and (23) with 

Δ𝑡 ൌ 5 ൈ 10ିହ and then calculate a cumulative hedging error of each path either when 

the American put is early exercised or matured at 𝑇. Suppose that as long as a stock 

price-variance path hits the early exercise surface generated from the benchmark FDM, 

the American put is exercised by its holder. 

For each simulation path, when the issuer sells an American put option at 𝑃ሺ𝑡଴ሻ, 

he simultaneously uses the sales proceeds to construct our static hedging portfolio 

𝑃௡
ௌு௉ሺ𝑡଴ሻ in Equation (18), after which he deposits (borrows) the margin (lost) into 

(from) the bank account to earn (pay) the interest rate 𝑟, i.e.,  

 𝜂଴ ൌ 𝑃ሺ𝑡଴ሻ െ 𝑃௡
ௌு௉ሺ𝑡଴ሻ, (38) 

where 𝜂଴ denotes the initial hedging error. If the American option does not exercise 

before 𝑡ଵ, the balance of the bank account grows at the risk-free interest rate: 

 𝜂ଵ
ି ൌ 𝜂଴𝑒௥ሺ௧భି௧బሻ. (39) 

The issuer then earns the payoffs from the European options expired at 𝑡ଵ in the 

SHP into the bank account, i.e., 
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 𝜂ଵ ൌ 𝜂ଵ
ି ൅ 𝑤଴ሺ𝐵଴ െ 𝑆ሺ𝑡ଵሻሻା ൅ 𝑤ෝ଴ሺ𝐵଴ െ 𝛾 െ 𝑆ሺ𝑡ଵሻሻା. (40) 

The bank account is continually updated in this manner until the American put option 

is exercised or matured. By denoting the terminating time point as 𝜏 , the issuer 

liquidates the remaining SHP for 𝑃௡
ௌு௉ሺ𝜏ሻ and realizes the hedging error defined as 

𝐻𝐸 ൌ 𝑒ି௥ሺఛି௧బሻሾ𝑃௡
ௌு௉ሺ𝜏ሻ ൅ 𝜂ఛ െ ሺ𝑋 െ 𝑆ሺ𝜏ሻሻାሿ,            (41) 

where ሺ𝑋 െ 𝑆ሺ𝜏ሻሻା is the amount paid out by the issuer.  

If 𝑃௡
ௌு௉ሺ𝜏ሻ ൅ 𝜂ఛ is larger than ሺ𝑋 െ 𝑆ሺ𝜏ሻሻା, the issuer has positive hedging error 

(𝐻𝐸 ); otherwise, the issuer has negative 𝐻𝐸 . To evaluate the extreme loss of the 

hedging risk, we adopt four measures suggested by Siven and Poulsen (2009). The first 

risk measure is the 5% Value at Risk, defined as 𝑉𝑎𝑅଴.଴ହ ൌ െ𝑖𝑛𝑓ሼ𝑧 ∈ 𝑅; 𝑃𝑟ሺ𝐻𝐸 ൑

𝑧ሻ ൑ 0.05ሽ . The second risk is the expected shortfall, defined as 𝐸𝑆଴.଴ହ ൌ

െ𝐸ሾ𝐻𝐸|𝐻𝐸 ൑ 𝑉𝑎𝑅଴.଴ହሿ. The third risk measure is the expected squared hedging error, 

defined as 𝐸𝑆𝐻𝐸 ൌ 𝐸ሾ𝐻𝐸ଶሿ . The last risk measure is the expected loss, defined as 

𝐸𝐿 ൌ െ𝐸ሾ𝐻𝐸|𝐻𝐸 ൑ 0ሿ . For all four risk measures, smaller results indicate better 

hedging performance. The risk measurements based on the DDH method with daily 

rebalance are also reported for comparison. Appendix B explains the detailed process 

of the DDH method. 

We first analyze the hedging performance of the proposed SHP methods using 

European puts with either non-standard or standard strike prices for the 27 contracts in 

Set 1. The corresponding results are reported in Panels A and B, respectively, in Table 

9. Panel A in Table 9 shows that the hedging ability of the proposed SHP methods is in 

general excellent, particularly for Methods 2∗  and 3∗ . Compared to the average 

option value in Set 1 (8.8041), the 𝑉𝑎𝑅଴.଴ହ  of Methods 1∗ , 2∗ , and 3∗  are only 

0.0834, 0.0752, and 0.0731, which represent 0.95%, 0.85%, and 0.83% of the average 

option value, respectively. The hedging performance is amazing, which means that the 

probability for the maximum hedging loss for an American put higher than 0.83%-

0.95% of its initial sales proceeds is less than 5%. In contrast, for the 𝑉𝑎𝑅଴.଴ହ of the 

DDH method, the probability for the maximum hedging loss for an American put higher 

than 27.89% (=2.4549/8.8041) of the initial sales proceeds is less than 5%. Moreover, 
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incorporating the vega-matching condition into the proposed SHP methods further 

reduce the hedging risk, compared to the counterpart non-vega-matching SHP methods. 

As expected, due to the non-optimality of considering only standard strike prices as 

potential critical stock prices that solve the value-matching, smooth-pasting, or vega-

matching condition, the hedging performance is weakened in Panel B in Table 9. 

However, the hedging performance of the proposed SHP methods is still satisfactory. 

For example, the 𝑉𝑎𝑅଴.଴ହ of Methods 1∗, 2∗, and 3∗ are 0.1252, 0.1698, and 0.1511, 

which represent 1.42%, 1.93%, and 1.72% of the average option value, respectively. 

Furthermore, even for the hedging results of the proposed SHP methods in Panel B, 

they are much smaller than those associated with the DDH method, demonstrating again 

the superior hedging performance of the proposed SHP methods used in the real world. 

[Table 9 should be here] 

Last, we examine the hedging performance of the proposed SHP methods for Set 

2 in Tables 10 and 11. Panel A of Table 10 shows that the proposed SHP methods 

perform excellently in hedging American puts. For instance, compared to the average 

option value in Set 2 (7.7062), the 𝑉𝑎𝑅଴.଴ହ  of Methods 1∗ , 2∗ , and 3∗  are only 

0.0677, 0.0607, and 0.0601, which represent 0.88%, 0.79%, and 0.78% of the average 

option value, respectively. Methods 2∗ and 3∗ perform almost equally well in terms 

of the four risk measurements. In addition, the SHP methods with vega matching are 

more capable than those counterparts without vega matching in hedging American puts. 

For example, the 𝑉𝑎𝑅଴.଴ହ  decreases by 21.76%, 25.25%, and 23.83% and 𝐸𝑆଴.଴ହ 

decreases by 6.37%, 9.44%, and 7.90% due to the inclusion of the vega-matching 

condition in Methods 1∗ , 2∗ , and 3∗  (vs. Methods 1 , 2 , and 3 ). Under the 

constraint of using merely European puts with standard strike prices to construct SHPs, 

Methods 2∗ exhibits the best hedging performance in Panel B of Table 10 and its, for 

example, its 𝑉𝑎𝑅଴.଴ହ represents 2.08% (=0.1604/7.7062) of the average option value. 

Furthermore, for all the proposed SHP methods and no matter using European puts with 

nonstandard or standard strike prices, their hedging losses are much smaller than that 

of the DDH method in terms of the four risk measurements, demonstrating the merit of 

the proposed SHP methods in hedging American puts. 
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Table 11 reports the hedging performance analysis for all early exercised paths of 

the 600 contracts in Set 2. We conduct this analysis because the issuers or hedgers who 

employ our SHP methods are most concerned about hedging risk when the target 

American puts are early exercised. For early exercise paths, the performance of 

Methods 2∗ and 3∗ is excellent and the differences between them are minor in Panel 

A of Table 11. For example, the 𝑉𝑎𝑅଴.଴ହ  of Methods 2∗  (3∗ ) is 0.0419 (0.0412), 

which represents only 0.54% (0.53%) of the average option value of Set 2. In contrast, 

the 𝑉𝑎𝑅଴.଴ହ of the DDH methods is 1.6167, roughly equal to 20.98% of the average 

option value of Set 2. In addition, the four risk measurements of Methods 1∗, 2∗, and 

3∗  are smaller than those of Methods 1 , 2 , and 3  due to the inclusion of vega 

matching. For example, the 𝑉𝑎𝑅଴.଴ହ decreases by 28.15%, 32.85%, and 31.56% and 

𝐸𝑆଴.଴ହ decreases by 22.32%, 17.71%, and 51.09% for Methods 1∗, 2∗, and 3∗ (vs. 

Methods 1, 2, and 3). If using merely European puts with standard strike prices in the 

proposed SHP methods, Methods 2∗ dominates other methods in hedging American 

puts. Even the four risk measurements of the proposed SHP methods in Panel B remain 

smaller than that of the DDH method. In a word, the results in Table 11 demonstrate the 

superiority performance of using Methods 1∗, 2∗, and 3∗ to hedge American puts that 

are early exercised.   

[Table 10 should be here] 

[Table 11 should be here] 

5. Conclusion 

In this paper, we propose a novel method to construct an SHP under Heston’s SV model 

to hedge American puts. First, to extend Chung and Shih’s (2009) method into the SV 

framework, we replace the constant variance with the conditional expected variance in 

their method. Furthermore, we examine three methods to estimate the conditional 

expected variance: the Euler, drift interpolation, and simulation method. Moreover, 

since the purpose of the smooth-pasting condition is to align the sensitivity with respect 

to the stock price change between the SHP and the target option on the early exercise 

boundary, this paper is the first to incorporate the vega-matching condition in the SHP 
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method, which aligns the sensitivity with respect to the variance change between the 

SHP and the target option on the early exercise boundary. To implement the vega-

matching condition, we borrow Fink’s (2003) idea to involve a further out-of-the-

money European put at each examined time point.  

Among 600 randomly generated American put contracts, our numerical results 

indicate that the proposed SHP methods show impressive pricing accuracy. Pricing 

errors of the proposed SHP methods range from 0.11% to 0.14% of the average option 

value of the 600 American puts. Even under the constraint of trading only European 

puts with standard strike prices when implementing the proposed SHP methods, pricing 

errors range from 1.06% to 1.16% of the average option value. Introducing the vega-

matching condition reduces the pricing error by 68.09%, 64.53%, and 36.50% (23.89%, 

25.79%, and 19.29%) for the Euler, drift interpolation, and simulation method, 

respectively (when only European puts with standard strike prices are allowed to trade). 

The hedging performance of the proposed SHP methods is also amazing. Take 𝑉𝑎𝑅଴.଴ହ 

for example. Without (with) the constraint of trading only European puts with standard 

strike prices, the values of 𝑉𝑎𝑅଴.଴ହ range from 0.78% to 0.88% (2.08% to 2.14%) of 

the average option value. In contrast, the 𝑉𝑎𝑅଴.଴ହ of the traditional dynamic delta-

neutral hedging method is 23.58% of the average option value. The advantage of 

introducing the vega-matching condition is also pronounced in reducing hedging risks. 

The hedging risk is significantly smaller for the vega-matching SHP methods, resulting 

in the reduction of 𝑉𝑎𝑅଴.଴ହ by 21.73%, 25.25%, and 23.83% (34.72%, 36.32%, and 

35.93%) for the Euler, drift interpolation, and simulation method, respectively (when 

only European puts with standard strike prices are allowed to trade). 

In summary, for hedging American puts under Heston’s SV model, introducing the 

concept of conditional expected variance into the SHP method not only makes this 

method to be feasible while one can trade only limited number of out-of-money options 

with different times to maturity but also yields excellent hedging and pricing 

performance for American puts. For issuers or hedgers who focus on short-term (less 

than half a year) American puts and care about the computational efficiency, we 

recommend employing the drift interpolation method to calculate the conditional 

expected variance (Method 2∗). For issuers or hedgers who focus on long-term (longer 
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than half a year) American puts, the simulation method to calculate the conditional 

expected variance (Method 3∗ ) may be more reliable but at the cost of more 

computation time. 
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Appendix A: Examples of Detailed Compositions of Our SHPs.  

To facilitate understanding the compositions of the SHPs based on Methods 1∗, 2∗, 

and 3∗, we take the first American put contract in Table 2 for example to show our 

computation details. The weights, maturities, and strike prices for the component 

European puts for Methods 1∗ , 2∗ , and 3∗  are shown in Tables A1, A2, and A3, 

respectively. In addition, at each examined time point 𝑡௜ , we also compare the 

conditional expected variance 𝐸ሾ𝑣ሺ𝑡௜ሻ|𝐵௜ሿ  with the corresponding variance for 

𝑆ሺ𝑡௜ሻ ൌ 𝐵௜ on the early exercise boundary in the FDM. Although there is no theory 

stating the relationship between these two quantities, we believe that the differences 

between them should not be too volatile across all examined time points.  

Comparing Table A3 with Tables A1 and A2, for the examined time points distant 

from today, e.g., 𝑡ଶ, … , 𝑡ହ, Method 3∗ is theoretically more accurate than Methods 1∗ 

and 2∗ because it has little discretization error in time dimension. However, for the 

examined time points near today, e.g., 𝑡̃଴  and 𝑡ଵ , since the price range for the 

simulated stock paths is not wide enough, Method 3∗  seems to suffer significant 

interpolation errors when calculating the conditional expected variances. Especially at 

𝑡̃଴ ൌ 0.0001, even though 𝐵଴ is as low as 45.144, the conditional expected variance 

𝐸ሾ𝑣ሺ𝑡̃଴ሻ|𝐵଴ሿ  does not rise according to the negative relationship between the stock 

price and its variance, but equal to the initial variance 𝑣ሺ𝑡଴ሻ ൌ 0.04, because almost 

all the simulated stock prices are concentrating around 𝑣ሺ𝑡଴ሻ ൌ 0.04 at 𝑡̃଴. In contrast, 

Methods 1∗ and 2∗ perform more reasonably for the examined time points near today. 

When 𝐵଴ is around 60.2, the corresponding 𝐸ሾ𝑣ሺ𝑡̃଴ሻ|𝐵଴ሿ equals 0.147, which is as 

expected to be significantly higher than the initial variance 𝑣ሺ𝑡଴ሻ ൌ 0.04. Moreover, 

for the examined time points distant from today, the results of Methods 2∗ are closer 

to those of Methods 3∗ , indicating that Methods 2∗  is less affected by the 

discretization error in time dimension than Methods 1∗. 
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Contract 1 in Table 2 (Method 1∗) 

Weight 
Option Contract Conditional expected variance vs. the corresponding variance for 

𝑆ሺ𝑡௜ሻ ൌ 𝐵௜ on the early exercise boundary in FDM Maturity Strike Price 

1 𝑡଺ ൌ 0.5 𝑋 ൌ 90  

𝑤ହ ൌ 0.437 𝑡଺ ൌ 0.5 𝐵ହ ൌ 72.048 𝐸ሾ𝑣ሺ𝑡ହሻ|𝐵ହሿ ൌ 0.131. 

On the early exercise boundary in FDM at 𝑡ହ, if 𝑆ሺ𝑡ହሻ ൌ 72.048, 

the corresponding 𝑣ሺ𝑡ହሻ is 0.151. 
𝑤ෝହ ൌ െ0.568 𝑡଺ ൌ 0.5 𝐵ହ െ 𝛾 ൌ 69.548 

𝑤ସ ൌ 0.443 𝑡ହ ൌ 0.5 ൈ
5
6

 𝐵ସ ൌ 67.488 𝐸ሾ𝑣ሺ𝑡ସሻ|𝐵ସሿ ൌ 0.140. 

On the early exercise boundary in FDM at 𝑡ସ, if 𝑆ሺ𝑡ସሻ ൌ 67.488, 

the corresponding 𝑣ሺ𝑡ସሻ is 0.170. 𝑤ෝସ ൌ െ0.466 𝑡ହ ൌ 0.5 ൈ
5
6

 𝐵ସ െ 𝛾 ൌ 64.988 

𝑤ଷ ൌ 0.417 𝑡ସ ൌ 0.5 ൈ
4
6

 𝐵ଷ ൌ 64.508 𝐸ሾ𝑣ሺ𝑡ଷሻ|𝐵ଷሿ ൌ 0.145. 

On the early exercise boundary in FDM at 𝑡ଷ, if 𝑆ሺ𝑡ଷሻ ൌ 64.508, 

the corresponding 𝑣ሺ𝑡ଷሻ is 0.172. 
𝑤ෝଷ ൌ െ0.454 𝑡ସ ൌ 0.5 ൈ

4
6

 𝐵ଷ െ 𝛾 ൌ 62.008 

𝑤ଶ ൌ 0.430 𝑡ଷ ൌ 0.5 ൈ
3
6

 𝐵ଶ ൌ 62.491 𝐸ሾ𝑣ሺ𝑡ଶሻ|𝐵ଶሿ ൌ 0.147. 

On the early exercise boundary in FDM at 𝑡ଶ, if 𝑆ሺ𝑡ଶሻ ൌ 62.491, 

the corresponding 𝑣ሺ𝑡ଶሻ is 0.179. 𝑤ෝଶ ൌ െ0.481 𝑡ଷ ൌ 0.5 ൈ
3
6

 𝐵ଶ െ 𝛾 ൌ 59.991 

𝑤ଵ ൌ 0.453 𝑡ଶ ൌ 0.5 ൈ
2
6

 𝐵ଵ ൌ 61.123 𝐸ሾ𝑣ሺ𝑡ଵሻ|𝐵ଵሿ ൌ 0.148. 

On the early exercise boundary in FDM at 𝑡ଵ, if 𝑆ሺ𝑡ଵሻ ൌ 61.123, 

the corresponding 𝑣ሺ𝑡ଵሻ is 0.171. 𝑤ෝଵ ൌ െ0.513 𝑡ଶ ൌ 0.5 ൈ
2
6

 𝐵ଵ െ 𝛾 ൌ 58.623 

𝑤଴ ൌ 0.470 𝑡ଵ ൌ 0.5 ൈ
1
6

 𝐵଴ ൌ 60.192 𝐸ሾ𝑣ሺ𝑡̃଴ሻ|𝐵଴ሿ ൌ 0.147. 

On the early exercise boundary in FDM at 𝑡̃଴, if 𝑆ሺ𝑡̃଴ሻ ൌ 60.192, 

the corresponding 𝑣ሺ𝑡̃଴ሻ is 0.172. 𝑤ෝ଴ ൌ െ0.536 𝑡ଵ ൌ 0.5 ൈ
1
6

 𝐵଴ െ 𝛾 ൌ 57.692 

Table A1. Detailed computation results for Contract 1 in Table 2 based on Method 1∗. 
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Contract 1 in Set 1 (Method 2∗) 

Weight 
Option Contract Conditional expected variance vs. the variance corresponding to 𝐵௜ 

on the early exercise boundary in FDM Maturity Strike Price 

1 𝑡଺ ൌ 0.5 𝑋 ൌ 90  

𝑤ହ ൌ 0.441 𝑡଺ ൌ 0.5 𝐵ହ ൌ 73.619 𝐸ሾ𝑣ሺ𝑡ହሻ|𝐵ହሿ ൌ 0.110. 

On the early exercise boundary in FDM at 𝑡ହ, if 𝑆ሺ𝑡ହሻ ൌ 73.619, 

the corresponding 𝑣ሺ𝑡ହሻ is 0.133. 
𝑤ෝହ ൌ െ0.584 𝑡଺ ൌ 0.5 𝐵ହ െ 𝛾 ൌ 71.119 

𝑤ସ ൌ 0.452 𝑡ହ ൌ 0.5 ൈ
5
6

 𝐵ସ ൌ 69.261 𝐸ሾ𝑣ሺ𝑡ସሻ|𝐵ସሿ ൌ 0.120. 

On the early exercise boundary in FDM at 𝑡ସ, if 𝑆ሺ𝑡ସሻ ൌ 69.261, 

the corresponding 𝑣ሺ𝑡ସሻ is 0.143. 𝑤ෝସ ൌ െ0.474 𝑡ହ ൌ 0.5 ൈ
5
6

 𝐵ସ െ 𝛾 ൌ 66.761 

𝑤ଷ ൌ 0.418 𝑡ସ ൌ 0.5 ൈ
4
6

 𝐵ଷ ൌ 66.135 𝐸ሾ𝑣ሺ𝑡ଷሻ|𝐵ଷሿ ൌ 0.128. 

On the early exercise boundary in FDM at 𝑡ଷ, if 𝑆ሺ𝑡ଷሻ ൌ 66.135, 

the corresponding 𝑣ሺ𝑡ଷሻ is 0.146. 
𝑤ෝଷ ൌ െ0.447 𝑡ସ ൌ 0.5 ൈ

4
6

 𝐵ଷ െ 𝛾 ൌ 63.635 

𝑤ଶ ൌ 0.425 𝑡ଷ ൌ 0.5 ൈ
3
6

 𝐵ଶ ൌ 63.745 𝐸ሾ𝑣ሺ𝑡ଶሻ|𝐵ଶሿ ൌ 0.135. 

On the early exercise boundary in FDM at 𝑡ଶ, if 𝑆ሺ𝑡ଶሻ ൌ 63.745, 

the corresponding 𝑣ሺ𝑡ଶሻ is 0.155. 𝑤ෝଶ ൌ െ0.463 𝑡ଷ ൌ 0.5 ൈ
3
6

 𝐵ଶ െ 𝛾 ൌ 61.245 

𝑤ଵ ൌ 0.432 𝑡ଶ ൌ 0.5 ൈ
2
6

 𝐵ଵ ൌ 61.826 𝐸ሾ𝑣ሺ𝑡ଵሻ|𝐵ଵሿ ൌ 0.141. 

On the early exercise boundary in FDM at 𝑡ଵ, if 𝑆ሺ𝑡ଵሻ ൌ 61.826, 

the corresponding 𝑣ሺ𝑡ଵሻ is 0.167. 𝑤ෝଵ ൌ െ0.471 𝑡ଶ ൌ 0.5 ൈ
2
6

 𝐵ଵ െ 𝛾 ൌ 59.326 

𝑤଴ ൌ 0.435 𝑡ଵ ൌ 0.5 ൈ
1
6

 𝐵଴ ൌ 60.220 𝐸ሾ𝑣ሺ𝑡̃଴ሻ|𝐵଴ሿ ൌ 0.147. 

On the early exercise boundary in FDM at 𝑡̃଴, if 𝑆ሺ𝑡̃଴ሻ ൌ 60.220, 

the corresponding 𝑣ሺ𝑡̃଴ሻ is 0.172. 𝑤ෝ଴ ൌ െ0.471 𝑡ଵ ൌ 0.5 ൈ
1
6

 𝐵଴ െ 𝛾 ൌ 57.720 

Table A2. Detailed computation results for Contract 1 in Table 2 based on Method 2∗. 
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Contract 1 in Set 1 (Method 3∗) 

Weight 
Option Contract Conditional expected variance vs. the variance corresponding to 𝐵௜ 

on the early exercise boundary in FDM Maturity Strike Price 

1 𝑡଺ ൌ 0.5 𝑋 ൌ 90  

𝑤ହ ൌ 0.441 𝑡଺ ൌ 0.5 𝐵ହ ൌ 73.773 𝐸ሾ𝑣ሺ𝑡ହሻ|𝐵ହሿ ൌ 0.108. 

On the early exercise boundary in FDM at 𝑡ହ, if 𝑆ሺ𝑡ହሻ ൌ 73.773, 

the corresponding 𝑣ሺ𝑡ହሻ is 0.134. 
𝑤ෝହ ൌ െ0.585 𝑡଺ ൌ 0.5 𝐵ହ െ 𝛾 ൌ 71.273 

𝑤ସ ൌ 0.485 𝑡ହ ൌ 0.5 ൈ
5
6

 𝐵ସ ൌ 68.527 𝐸ሾ𝑣ሺ𝑡ସሻ|𝐵ସሿ ൌ 0.129. 

On the early exercise boundary in FDM at 𝑡ସ, if 𝑆ሺ𝑡ସሻ ൌ 68.527, 

the corresponding 𝑣ሺ𝑡ସሻ is 0.152. 𝑤ෝସ ൌ െ0.494 𝑡ହ ൌ 0.5 ൈ
5
6

 𝐵ସ െ 𝛾 ൌ 66.027 

𝑤ଷ ൌ 0.412 𝑡ସ ൌ 0.5 ൈ
4
6

 𝐵ଷ ൌ 65.487 𝐸ሾ𝑣ሺ𝑡ଷሻ|𝐵ଷሿ ൌ 0.134. 

On the early exercise boundary in FDM at 𝑡ଷ, if 𝑆ሺ𝑡ଷሻ ൌ 65.487, 

the corresponding 𝑣ሺ𝑡ଷሻ is 0.156. 
𝑤ෝଷ ൌ െ0.449 𝑡ସ ൌ 0.5 ൈ

4
6

 𝐵ଷ െ 𝛾 ൌ 62.987 

𝑤ଶ ൌ 0.435 𝑡ଷ ൌ 0.5 ൈ
3
6

 𝐵ଶ ൌ 63.594 𝐸ሾ𝑣ሺ𝑡ଶሻ|𝐵ଶሿ ൌ 0.135. 

On the early exercise boundary in FDM at 𝑡ଶ, if 𝑆ሺ𝑡ଶሻ ൌ 63.594, 

the corresponding 𝑣ሺ𝑡ଶሻ is 0.164. 𝑤ෝଶ ൌ െ0.495 𝑡ଷ ൌ 0.5 ൈ
3
6

 𝐵ଶ െ 𝛾 ൌ 61.094 

𝑤ଵ ൌ 2.243 𝑡ଶ ൌ 0.5 ൈ
2
6

 𝐵ଵ ൌ 49.094 𝐸ሾ𝑣ሺ𝑡ଵሻ|𝐵ଵሿ ൌ 0.379251. 

On the early exercise boundary in FDM at 𝑡ଵ, if 𝑆ሺ𝑡ଵሻ ൌ 49.094, 

the corresponding 𝑣ሺ𝑡ଵሻ is 0.379253. 𝑤ෝଵ ൌ െ2.442 𝑡ଶ ൌ 0.5 ൈ
2
6

 𝐵ଵ െ 𝛾 ൌ 46.594 

𝑤଴ ൌ െ2.536 𝑡ଵ ൌ 0.5 ൈ
1
6

 𝐵଴ ൌ 45.144 𝐸ሾ𝑣ሺ𝑡̃଴ሻ|𝐵଴ሿ ൌ 0.040. 

On the early exercise boundary in FDM at 𝑡̃଴, if 𝑆ሺ𝑡̃଴ሻ ൌ 45.144, 

the corresponding 𝑣ሺ𝑡̃଴ሻ is 0.431. 𝑤ෝ଴ ൌ 6.464 𝑡ଵ ൌ 0.5 ൈ
1
6

 𝐵଴ െ 𝛾 ൌ 42.644 

Table A3. Detailed computation results for Contract 1 in Table 2 based on Method 3∗.  
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Appendix B: Hedging Errors of the Dynamic Delta-Neutral Hedging (DDH) 

Method Based on Finite Difference Method (FDM) 

For the DDH method, the commonly used delta-neutral strategy with daily rebalance in 

practice is conducted. Given a simulated stock price-variance path, the DDH method 

for hedging American puts can be described as the following three-step method. 

Step 1. Suppose an issuer sells an American put at the benchmarked option value 𝑃ሺ𝑡଴ሻ 

and uses the sales proceeds to invest Δ଴𝑆ሺ𝑡଴ሻ in the underlying stock, where Δ଴ ൌ

Δ଴ሺ𝑆ሺ𝑡଴ሻ, 𝑣ሺ𝑡଴ሻሻ is the delta value of the American put at time 𝑡଴ calculated by the 

FDM. Finally, the remaining fund (could be negative), i.e., 𝜂଴ ൌ 𝑃ሺ𝑡଴ሻ െ Δ଴𝑆ሺ𝑡଴ሻ, is 

invested to earn the risk-free interest rate r. 

Step. 2. Just before any rebalance day 𝜏 ൌ 𝑡଴ ൅ ℎ, 𝑡଴ ൅ 2ℎ, 𝑡଴ ൅ 3ℎ,…, where ℎ is 

one day, the DDH portfolio value evolves to be Πఛ ൌ Δఛି௛𝑆ሺ𝜏ሻ𝑒௤௛ ൅ 𝜂ఛି௛𝑒௥௛. If the 

stock price-variance path hits the early exercise surface generated from the FDM, the 

present value of the hedging error is calculated as follows and the hedging process is 

terminated. 

𝐻𝐸 ൌ 𝑒ି௥ሺఛି௧బሻ ቂΠఛ െ൫𝑋 െ 𝑆ሺ𝜏ሻ൯
ା

ቃ. 

Otherwise, calculate the new delta value of the American put given the simulated 𝑆ሺ𝜏ሻ 

and 𝑣ሺ𝜏ሻ  at 𝜏 , i.e., Δఛ ൌ Δఛሺ𝑆ሺ𝜏ሻ, 𝑣ሺ𝜏ሻሻ , using the FDM. Invest Δఛ𝑆ሺ𝜏ሻ  in the 

underlying stock and the remaining fund 𝜂ఛ ൌ Πఛ െ Δఛ𝑆ሺ𝜏ሻ  in the risk-free asset, 

respectively. 

Step 3. Repeating Step 2 until the maturity date 𝑇 if possible, the DDH portfolio value 

evolves to be Π் ൌ Δ்ି௛𝑆ሺ𝑇ሻ𝑒௤௛ ൅ 𝜂்ି௛𝑒௥௛  and the present value of the hedging 

error at 𝑇 is as follows: 

𝐻𝐸 ൌ 𝑒ି௥ሺ்ି௧బሻ ቂΠ் െ൫𝑋 െ 𝑆ሺ𝑇ሻ൯
ା

ቃ. 
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Panel A: Simulated variance conditional on stock price at 𝑡 ൌ
ହ

ଵଶ
 

 

Panel B: Simulated variance conditional on stock price at 𝑡 ൌ
ଵ

ଵଶ
 

 

Figure 1. Simulated conditional expected variance. We conduct 15,000 simulated paths with a time step 

of 5×10-5 based on Equations (22) and (23) and then group the price paths into fixed price intervals at 

each examined time 𝑡௜ . The parameters are 𝑆ሺ𝑡଴ሻ ൌ 100 , 𝑋 ൌ 90 , 𝑟 ൌ 0.05 , 𝑞 ൌ 0.02 , 𝑇 ൌ 0.5 , 

𝑣ሺ𝑡଴ሻ ൌ 0.04 , 𝜎௩ ൌ 0.3 , 𝜅 ൌ 1 , 𝜃 ൌ 0.09 , 𝜌 ൌ െ0.7 , and 𝑛 ൌ 6 . In the figure, the diamonds 

represent the average variance at 𝑡௜ across all corresponding variance paths within each price interval, 

with the interval’s average stock price serving as the representative stock value. The crosses indicate the 

variance values piece-wise interpolated from the simulated average variance and representative stock 

value. The circles represent the stock prices outside the bounds of the stock price paths, necessitating the 

estimation of the conditional expected variance with linear extrapolation based on the two outermost 

diamond points.  
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Panel A: Method 1∗ convergence analysis of Set 1 

Panel B: Method 1 convergence analysis of Set 1 
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Panel C: Method 2∗ convergence analysis of Set 1 

Panel D: Method 2 convergence analysis of Set 1 

Figure 2. Convergence analyses with respect to 𝑛 . RMSPE indicates the root of mean squared 

percentage error. Based on the pricing results in Table 2, this figure illustrates the RMSPE of the SHP 

Method 1∗, 1, 2∗, and 2 given various values for 𝑛. Taking 𝑛 ൌ  6 as an example, the solid circles 

represent the RMSPE among the option contracts in Set 1 given 𝑛 ൌ  6. For a given 𝑛, the top of the 

vertical line, the top of the vertical bar, the bottom of the vertical bar, and the bottom of the vertical line 

represent the maximum, 75th percentile, 25th percentile, and minimum absolute percentage error among 

the 27 contracts in Set 1, respectively. If there is no vega-matching condition, the pricing results 

apparently do not improve with 𝑛: not only do the RMSPEs of the SHP methods clearly increase with 

𝑛, but the variances of the errors among Set 1 also become larger with 𝑛. 
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Weight 
Option Contract 

Steps of the backward process to construct an SHP for an American put given 𝑛 ൌ 6 
Maturity Strike Price 

1 𝑡଺ 𝑋 

1. Match the 

maturity 

payoff at 

𝑇 ൌ 𝑡଺ with 

a counterpart 

European 

option. 

2. Determine 

𝑤ହ, 𝑤ෝହ, and 

𝐵ହ by 

matching the 

three 

boundary 

conditions at 

𝑡ହ. 

3. Determine 

𝑤ସ, 𝑤ෝସ, and 

𝐵ସ by 

matching the 

three 

boundary 

conditions at 

𝑡ସ. 

4. Determine 

𝑤ଷ, 𝑤ෝଷ, and 

𝐵ଷ by 

matching the 

three 

boundary 

conditions at 

𝑡ଷ. 

5. Determine 

𝑤ଶ, 𝑤ෝଶ, and 

𝐵ଶ by 

matching the

three 

boundary 

conditions at 

𝑡ଶ. 

6. Determine 

𝑤ଵ, 𝑤ෝଵ, and 

𝐵ଵ by 

matching the 

three 

boundary 

conditions at 

𝑡ଵ. 

7. Determine 

𝑤଴, 𝑤ෝ଴, and 

𝐵଴ by 

matching the 

three 

boundary 

conditions at 

𝑡̃଴. 

𝑤ହ  𝑡଺ 𝐵ହ  

𝑤ෝହ  𝑡଺ 𝐵ହ െ γ  

𝑤ସ  𝑡ହ 𝐵ସ 

 

𝑤ෝସ  𝑡ହ 𝐵ସ െ γ 

𝑤ଷ 𝑡ସ 𝐵ଷ 

 

𝑤ෝଷ 𝑡ସ 𝐵ଷ െ γ 

𝑤ଶ 𝑡ଷ 𝐵ଶ 

 

𝑤ෝଶ 𝑡ଷ 𝐵ଶ െ γ 

𝑤ଵ 𝑡ଶ 𝐵ଵ 

 

𝑤ෝଵ 𝑡ଶ 𝐵ଵ െ γ 

𝑤଴  𝑡ଵ 𝐵଴ 

 

𝑤ෝ଴  𝑡ଵ  𝐵଴ െ γ 

Table 1. Steps of the backward process to construct our SHP for American options given 𝑛 ൌ 6. The 

three boundary conditions indicate the value-matching, smooth-pasting, and vega-matching conditions 

given 𝑆ሺ𝑡௜ሻ ൌ 𝐵௜  at 𝑡௜ . When examining each time point 𝑡௜  in a backward sequence, i.e., for 𝑖 ൌ

5, 4, … , 0, two more European puts with the strike prices of 𝐵௜ and 𝐵௜ െ 𝛾 and matured at 𝑡௜ାଵ are 

included into our SHP. As a result, there are totally 13 (=1 ൅ 2𝑛) European puts in the SHP given 𝑛 ൌ 6. 
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𝑋 𝑣ሺ𝑡଴ሻ 𝑞 FDM 
Method 

1∗ 

Method 

2∗ 

Method 

3∗ 
Method 1 Method 2  Method 3

90 0.04 0.02 2.2485 2.2430 2.2472 2.2465 2.2396 2.2446 2.2470 

90 0.04 0.05 2.5017 2.5005 2.5016 2.5012 2.5003 2.5010 2.5013 

90 0.04 0.08 2.7997 2.8000 2.8000 2.7999 2.8000 2.8000 2.8000 

90 0.09 0.02 3.7897 3.7835 3.7876 3.7868 3.7787 3.7833 3.7872 

90 0.09 0.05 4.0961 4.0945 4.0958 4.0954 4.0942 4.0958 4.0957 

90 0.09 0.08 4.4480 4.4484 4.4485 4.4484 4.4484 4.4484 4.4484 

90 0.16 0.02 5.5979 5.5920 5.5953 5.5947 5.5875 5.5900 5.5945 

90 0.16 0.05 5.9396 5.9458 5.9438 5.9428 5.9375 5.9390 5.9390 

90 0.16 0.08 6.3234 6.3239 6.3240 6.3239 6.3239 6.3240 6.3239 

100 0.04 0.02 5.5089 5.4931 5.5042 5.5060 5.4742 5.4876 5.5085 

100 0.04 0.05 6.0045 6.0026 6.0054 6.0057 5.9990 6.002 6.0066 

100 0.04 0.08 6.6083 6.6107 6.6108 6.6107 6.6107 6.6107 6.6107 

100 0.09 0.02 7.5786 7.5666 7.5742 7.5748 7.5510 7.5581 7.5764 

100 0.09 0.05 8.0734 8.0712 8.0736 8.0735 8.0705 8.0736 8.0742 

100 0.09 0.08 8.6580 8.6598 8.6599 8.6599 8.6598 8.6599 8.6599 

100 0.16 0.02 9.7996 9.7914 9.7959 9.7958 9.7826 9.7938 9.7935 

100 0.16 0.05 10.2929 10.2973 10.2968 10.2935 10.2902 10.2925 10.2926 

100 0.16 0.08 10.8579 10.8595 10.8596 10.8596 10.8593 10.8595 10.8595 

110 0.04 0.02 11.3155 11.2690 11.2893 11.3006 11.1735 11.1982 11.2259 

110 0.04 0.05 11.9836 11.9752 11.9809 11.9818 11.9582 11.9643 11.9864 

110 0.04 0.08 12.9184 12.9210 12.9211 12.9210 12.9209 12.9211 12.9210 

110 0.09 0.02 13.2721 13.2495 13.2597 13.2585 13.1797 13.2140 13.2591 

110 0.09 0.05 13.9124 13.9068 13.9106 13.9109 13.9055 13.9102 13.9068 

110 0.09 0.08 14.7239 14.7259 14.7261 14.7260 14.7258 14.7260 14.7259 

110 0.16 0.02 15.4979 15.4862 15.4914 15.4894 15.4808 15.4657 15.4942 

110 0.16 0.05 16.1134 16.1118 16.1136 16.1125 16.1090 16.1118 16.1140 

110 0.16 0.08 16.8457 16.8475 16.8478 16.8476 16.8472 16.8476 16.8474 

Table 2. Pricing results for Set 1. The parameters are 𝑆ሺ𝑡଴ሻ ൌ 100, 𝑟 ൌ 0.05, 𝑇 ൌ 0.5, 𝜎௩ ൌ 0.3, 

𝜅 ൌ 1, 𝜃 ൌ 0.09, 𝜌 ൌ െ0.7, 𝑋 ∈ ሼ90,100,110ሽ, 𝑞 ∈ ሼ0.02,0.05,0.08ሽ, 𝑣ሺ𝑡଴ሻ ∈ ሼ0.04,0.09,0.16ሽ, 

𝛾 ൌ 2.5, and 𝑛 ൌ 6. 
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Panel A: Pricing errors for Set 1 

 Method 1∗ Method 2∗ Method 3∗ Method 1 Method 2 Method 3 

RMSE 0.0115 0.0061 0.0047 0.0346 0.0270 0.0176 
 

Panel B: RMSE given 𝑟 ൒ 𝑞 or 𝑟 ൏ 𝑞 

 Method 1∗ Method 2∗ Method 3∗ Method 1 Method 2 Method 3 

𝑟 ൒ 𝑞 0.0141 0.0074 0.0056 0.0423 0.0330 0.0215 

𝑟 ൏ 𝑞 0.0017 0.0018 0.0018 0.0016 0.0018 0.0017 
 

Panel C: RMSE given different 𝑣ሺ𝑡଴ሻ 

 Method 1∗ Method 2∗ Method 3∗ Method 1 Method 2 Method 3 

𝑣ሺ𝑡଴ሻ ൌ 0.04 0.0168 0.0090 0.0053 0.0496 0.0403 0.0299 

𝑣ሺ𝑡଴ሻ ൌ 0.09 0.0091 0.0046 0.0049 0.0325 0.0201 0.0050 

𝑣ሺ𝑡଴ሻ ൌ 0.16 0.0058 0.0034 0.0036 0.0090 0.0113 0.0028 

Table 3. Pricing error analyses for Set 1. RMSE indicates the root of mean squared error. For reference, 

the average option value of the American puts in Set 1 is 8.8041 based on the benchmarked FDM method, 

and when implementing the SHP methods, 𝛾 ൌ 2.5  and 𝑛 ൌ 6 . Panel A shows that the simulation 

method (Methods 3*) performs the best, followed by the drift interpolation method (Methods 2*), 

followed by the Euler method (Method 1*), and under the same method for estimating conditional 

expected variance, the SHP methods with vega matching yield much smaller pricing errors compared to 

the non-vega-matching SHP methods. Moreover, the RMSEs of Method 1∗, 2∗, and 3∗ are extremely 

small, representing only 0.13%, 0.07%, and 0.05% of the average option value. In Panel B, under 𝑟 ൒

𝑞 , corresponding to a higher early exercise boundary and consequently greater probability of early 

exercise, Method 3* is still the best performer and there is a significant reduction in errors for the SHP 

methods with vega matching. Panel C presents the subsample analysis with respect to 𝑣ሺ𝑡଴ሻ . The 

performance of Method 3* is consistently well given different values of 𝑣ሺ𝑡଴ሻ, but Method 2* generates 

slightly smaller RMSEs than Method 3* when 𝑣ሺ𝑡଴ሻ is 0.09 and 0.16. 
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𝑋 𝑣ሺ𝑡଴ሻ 𝑞 FDM 
Method 

1∗ 

Method 

2∗ 

Method 

3∗ 
Method 1 Method 2  Method 3

90 0.04 0.02 2.2485 2.2182 2.2187 2.2574 2.2180 2.2180 2.2180 

90 0.04 0.05 2.5017 2.4973 2.5015 2.5021 2.4946 2.4952 2.4952 

90 0.04 0.08 2.7997 2.8000 2.8000 2.8000 2.7999 2.7999 2.7999 

90 0.09 0.02 3.7897 3.7868 3.7777 3.7781 3.7392 3.7396 3.7396 

90 0.09 0.05 4.0961 4.0897 4.0905 4.0905 4.0825 4.0825 4.0825 

90 0.09 0.08 4.4480 4.4486 4.4485 4.4486 4.4482 4.4482 4.4482 

90 0.16 0.02 5.5979 5.5785 5.5289 5.5296 5.5286 5.5286 5.5286 

90 0.16 0.05 5.9396 5.9270 5.9347 5.9274 5.9168 5.9167 5.9167 

90 0.16 0.08 6.3234 6.3238 6.3247 6.3233 6.3232 6.3232 6.3232 

100 0.04 0.02 5.5089 5.3955 5.3981 5.4937 5.3946 5.3946 5.3946 

100 0.04 0.05 6.0045 5.9945 6.0055 6.0042 5.9804 5.9826 5.9826 

100 0.04 0.08 6.6083 6.6109 6.6108 6.6108 6.6105 6.6105 6.6105 

100 0.09 0.02 7.5786 7.5846 7.5562 7.5527 7.4412 7.4412 7.4412 

100 0.09 0.05 8.0734 8.0767 8.0680 8.0676 8.0356 8.0383 8.0382 

100 0.09 0.08 8.6580 8.6599 8.6598 8.6599 8.6589 8.6589 8.6589 

100 0.16 0.02 9.7996 9.7915 9.7795 9.6483 9.6457 9.6457 9.6457 

100 0.16 0.05 10.2929 10.3105 10.3092 10.3067 10.2442 10.2441 10.2441 

100 0.16 0.08 10.8579 10.8607 10.8603 10.8595 10.8569 10.8569 10.8569 

110 0.04 0.02 11.3155 10.9250 11.2869 10.9327 10.9214 10.9214 10.9214 

110 0.04 0.05 11.9836 11.9906 11.9685 11.9573 11.9030 11.9093 11.9090 

110 0.04 0.08 12.9184 12.9213 12.9211 12.9210 12.9201 12.9210 12.9201 

110 0.09 0.02 13.2721 13.2774 13.2371 12.9454 12.9386 12.9385 12.9385 

110 0.09 0.05 13.9124 13.9308 13.9135 13.9081 13.8210 13.8279 13.8276 

110 0.09 0.08 14.7239 14.7268 14.7265 14.7265 14.7229 14.7228 14.7228 

110 0.16 0.02 15.4979 15.5602 15.5376 15.5206 15.1916 15.1915 15.1915 

110 0.16 0.05 16.1134 16.0851 16.1338 16.1004 16.0106 16.0180 16.0178 

110 0.16 0.08 16.8457 16.8482 16.8476 16.8475 16.8405 16.8405 16.8405 

Table 4. Pricing results for Set 1 when using only European puts with standard strike prices. The 

parameters are 𝑆ሺ𝑡଴ሻ ൌ 100 , 𝑟 ൌ 0.05 , 𝑇 ൌ 0.5 , 𝜎௩ ൌ 0.3 , 𝜅 ൌ 1 , 𝜃 ൌ 0.09 , 𝜌 ൌ െ0.7 , 𝑋 ∈

ሼ90,100,110ሽ, 𝑞 ∈ ሼ0.02,0.05,0.08ሽ, 𝑣ሺ𝑡଴ሻ ∈ ሼ0.04,0.09,0.16ሽ, 𝛾 ൌ 5, and 𝑛 ൌ 6. In the experiment, 

the critical early exercise boundary (𝐵ሷ ௜), serving as the strike price of the European option in the SHP, is 

restricted to being in the set of Θ ൌ ሾ40,45, … ,95,100ሿ. 
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Panel A: Pricing errors for Set 1 using options with standard strike prices 

 Method 1∗ Method 2∗ Method 3∗ Method 1 Method 2 Method 3 

RMSE 0.0799 0.0296 0.1025 0.1298 0.1292 0.1293 
 

Panel B: RMSE using options with standard strike prices given 𝑟 ൒ 𝑞 or 𝑟 ൏ 𝑞 

 Method 1∗ Method 2∗ Method 3∗ Method 1 Method 2 Method 3 

𝑟 ൒ 𝑞 0.0979 0.0362 0.1255 0.1590 0.1583 0.1583 

𝑟 ൏ 𝑞 0.0022 0.0020 0.0018 0.0020 0.0022 0.0021 
 

Panel C: RMSE using options with standard strike prices given different 𝑣ሺ𝑡଴ሻ 

 Method 1∗ Method 2∗ Method 3∗ Method 1 Method 2 Method 3 

𝑣ሺ𝑡଴ሻ ൌ 0.04 0.1360 0.0398 0.1280 0.1400 0.1396 0.1396 

𝑣ሺ𝑡଴ሻ ൌ 0.09 0.0073 0.0147 0.1094 0.1259 0.1253 0.1253 

𝑣ሺ𝑡଴ሻ ൌ 0.16 0.0250 0.0288 0.0564 0.1228 0.1222 0.1222 

Table 5. Pricing error analyses for Set 1 when using only European puts with standard strike prices. 

RMSE indicates the root of mean squared error. For reference, the average option value of the American 

puts in Set 1 is 8.8041 based on the benchmarked FDM method, and when implementing the SHP 

methods, 𝛾 ൌ 5, 𝑛 ൌ 6, and the critical early exercise boundary (𝐵ሷ ௜), serving as the strike price of the 

European put in the SHP, is restricted to being in the set of Θ ൌ ሾ40,45, … ,95,100ሿ. Upon comparison 

with the results presented in Table 3, it is evident that the restriction of considering only standard strike 

prices results in increasing, but still acceptable pricing errors, e.g., the RMSE of Method 2*, the best-

performing method here, is 0.0296, representing only 0.3% of the average option value. Under the same 

method for estimating conditional expected variance, the SHP methods with vega matching yield smaller 

errors compared to the non-vega-matching SHP methods. In Panel B, under 𝑟 ൒ 𝑞, corresponding to a 

higher early exercise boundary and consequently greater probability of early exercise, Method 2* is still 

the best performer and there is an obvious reduction in errors for the SHP methods with vega matching. 

Panel C presents the subsample analysis with respect to 𝑣ሺ𝑡଴ሻ. The performance of Method 2* is the 

best when 𝑣ሺ𝑡଴ሻ ൌ 0.04, but Method 1* generates the smallest RMSEs when 𝑣ሺ𝑡଴ሻ is 0.09 and 0.16. 
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Parameters Examined values 

𝑋 {90, 95, 100, 105, 110} 

𝑇 {
ଵ

ଵଶ
, 

ଶ

ଵଶ
, 

ଷ

ଵଶ
, 

ସ

ଵଶ
, 

ହ

ଵଶ
, 

଺

ଵଶ
} 

𝑆ሺ𝑡଴ሻ 100 

𝑟 0.05 

𝑞 Randomly drawing from unif(0, 0.08) 

𝑣ሺ𝑡଴ሻ Randomly drawing from unif(0.01, 0.25) 

𝜅 Randomly drawing from unif(0.1, 5) 

𝜃 0.13 

𝜎௩ Randomly drawing from unif(0.1, 0.5) 

𝜌 Randomly drawing from unif(-0.9, -0.5) 

Table 6. Parameter values for Set 2. To facilitate further comparison, we randomly drew 20 sets of data for 

𝑞, 𝑣ሺ𝑡଴ሻ, 𝜅, 𝜎௩, and 𝜌, where unif(𝑎,𝑏) is defined as the uniform distribution between 𝑎 and 𝑏, and then 

each combination of 𝑋 and 𝑇, for example, ሺ𝑋, 𝑇ሻ ൌ ሺ90,3/12ሻ, was combined with the simulated 20 

sets of 𝑞, 𝑣ሺ𝑡଴ሻ, 𝜅, 𝜎௩, and 𝜌 to form 20 examined contracts. We generate a total of 600 option contracts 

for Set 2. 
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Panel A: Pricing errors for Set 2 

 Method 1∗ Method 2∗ Method 3∗ Method 1 Method 2 Method 3 

RMSE 0.0105 0.0072 0.0087 0.0329 0.0203 0.0137 
 

Panel B: RMSE given 𝑟 ൒ 𝑞 or 𝑟 ൏ 𝑞 

 Method 1∗ Method 2∗ Method 3∗ Method 1 Method 2 Method 3 

𝑟 ൒ 𝑞 0.0110 0.0075 0.0091 0.0347 0.0214 0.0144 

𝑟 ൏ 𝑞 0.0037 0.0038 0.0038 0.0040 0.0036 0.0038 
 

Panel C: RMSE given different 𝑣ሺ𝑡଴ሻ 

 Method 1∗ Method 2∗ Method 3∗ Method 1 Method 2 Method 3 

Small 𝑣ሺ𝑡଴ሻ 0.0053 0.0040  0.0082 0.0099 0.0060  0.0053 

Medium 𝑣ሺ𝑡଴ሻ 0.0089 0.0074 0.0073 0.0215 0.0101 0.0082 

Large 𝑣ሺ𝑡଴ሻ 0.0149 0.0092 0.0104 0.0517 0.0331 0.0216 

Table 7. Pricing results for Set 2. RMSE indicates the root of mean squared error. For reference, the 

average option value of the American puts in Set 2 is 7.7062 based on the benchmarked FDM method, 

and when implementing the SHP methods, 𝛾 ൌ 2.5 and 𝑛 ൌ 6. In Panel A, Method 2∗ demonstrates 

the best pricing performance, and there is significant benefit to include the vega-matching condition for 

all examined methods. Moreover, the RMSEs of Method 1∗ , 2∗ , and 3∗  are extremely small, 

representing only 0.14%, 0.09%, and 0.11% of the average option value. In Panel B, under 𝑟 ൒ 𝑞 , 

corresponding to a higher early exercise boundary and consequently greater probability of early exercise, 

Method 2* is still the best performer and there is a significant reduction in errors for the SHP methods 

with vega matching. Panel C presents the subsample analysis with respect to 𝑣ሺ𝑡଴ሻ. The performance of 

Method 2* is consistently well given different levels of 𝑣ሺ𝑡଴ሻ, but Method 3* generates slightly smaller 

RMSEs than Method 2* for the medium 𝑣ሺ𝑡଴ሻ values. 
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Panel A: Pricing errors for Set 2 

 Method 1∗ Method 2∗ Method 3∗ Method 1 Method 2 Method 3 

RMSE 0.0841 0.0820 0.0891 0.1105 0.1105 0.1104 
 

Panel B: RMSE given 𝑟 ൒ 𝑞 or 𝑟 ൏ 𝑞 

 Method 1∗ Method 2∗ Method 3∗ Method 1 Method 2 Method 3 

𝑟 ൒ 𝑞 0.0887 0.0865 0.0915 0.1165 0.1165 0.1164 

𝑟 ൏ 𝑞 0.0026 0.0022 0.0643 0.0093 0.0082 0.0070 
 

Panel C: RMSE given different 𝑣ሺ𝑡଴ሻ 

 Method 1∗ Method 2∗ Method 3∗ Method 1 Method 2 Method 3 

Small 𝑣ሺ𝑡଴ሻ 0.0989 0.0916 0.1147 0.1132 0.1130 0.1129 

Medium 𝑣ሺ𝑡଴ሻ 0.0821 0.0802 0.0750 0.1117 0.1115 0.1114 

Large 𝑣ሺ𝑡଴ሻ 0.0686 0.0732 0.0711 0.1055 0.1070 0.1069 

Table 8. Pricing error analyses for Set 2 when using only European puts with standard strike prices. 

RMSE indicates the root of mean squared error. For reference, the average option value of the American 

puts in Set 1 is 7.7062 based on the benchmarked FDM method, and when implementing the SHP 

methods, 𝛾 ൌ 5, 𝑛 ൌ 6, and the critical early exercise boundary (𝐵ሷ ௜), serving as the strike price of the 

European put in the SHP, is restricted to being in the set of Θ ൌ ሾ40,45, … ,95,100ሿ. Upon comparison 

with the results presented in Table 7, it is evident that the restriction of considering only standard strike 

prices results in increasing, but still acceptable pricing errors, e.g., the RMSE of Method 2*, the best-

performing method here, is 0.0820, representing only 1.1% of the average option value. Under the same 

method for estimating conditional expected variance, the SHP methods with vega matching yield smaller 

errors compared to the non-vega-matching SHP methods. In Panel B, under 𝑟 ൒ 𝑞, corresponding to a 

higher early exercise boundary and consequently greater probability of early exercise, Method 2* is still 

the best performer and the SHP methods with vega matching still show better pricing ability. Panel C 

presents the subsample analysis with respect to 𝑣ሺ𝑡଴ሻ. The performance of Method 2* is the best for 

small 𝑣ሺ𝑡଴ሻ values, but Method 3* (1*) generates the smallest RMSEs for the medium (large) 𝑣ሺ𝑡଴ሻ 

values. 
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Panel A: Hedging risk measurements for Set 1 

 Method 1∗ Method 2∗ Method 3∗ Method 1 Method 2 Method 3 DDH 

𝑉𝑎𝑅଴.଴ହ 0.0834 0.0752 0.0731 0.1090 0.1002 0.0934 2.4549 

𝐸𝑆଴.଴ହ 0.1158 0.1085 0.1069 0.1413 0.1319 0.1248 3.0893 

𝐸𝑆𝐻𝐸 0.0432 0.0430 0.0426 0.0457 0.0449 0.0449 2.1873 

𝐸𝐿 0.0411 0.0376 0.0369 0.0551 0.0505 0.0465 1.2258 
 

Panel B: Hedging risk measurements for Set 1 using European puts with standard strike prices 

 Method 1∗ Method 2∗ Method 3∗ Method 1 Method 2 Method 3 

𝑉𝑎𝑅଴.଴ହ 0.1252  0.1698  0.1511  0.2856  0.2705  0.2818  

𝐸𝑆଴.଴ହ 0.2013  0.2113  0.2245  0.3703  0.3298  0.3660  

𝐸𝑆𝐻𝐸 0.0569  0.0578  0.0623  0.0776  0.0716  0.0772  

𝐸𝐿 0.0672  0.0903  0.0839  0.1581  0.1476  0.1559  
 

Table 9. Hedging risk measurements for Set 1. For reference, the average option value of the American 

puts in Set 1 is 8.8041 based on the benchmarked FDM method, and when implementing the SHP methods, 

𝛾 ൌ 2.5 ሺ5ሻ and 𝑛 ൌ 6 for Panel A (B). In addition, the critical early exercise boundary (𝐵ሷ ௜), serving as 

the strike price of the European option in the SHP, is restricted to be in the set of Θ ൌ ሾ40,45, … ,95,100ሿ 

in Panel B. First, both panels consistently show that the proposed SHP methods exhibit smaller hedging 

risk compared to the traditional DDH (dynamic delta-neutral hedging) method, and the SHP methods with 

vega matching outperform the counterparts without vega matching. Taking Method 2∗ for example, its 

𝑉𝑎𝑅଴.଴ହ is 0.0752 (0.1698) without (with) the constraint of using European puts with standard strike prices. 

These two 𝑉𝑎𝑅଴.଴ହ values represent 0.85% and 1.93% of the average American put value, respectively. In 

contrast, the 𝑉𝑎𝑅଴.଴ହ of the DDH method is 2.4549, representing 27.88% of the average American put 

value. Although with the constraint of considering only standard strike prices, the hedging risk is 

unavoidable to increase in Panel B. However, the hedging performance of SHP methods in Panel B is still 

satisfactory and significantly superior to that of the DDH Method. 
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Panel A: Hedging risk measurements for Set 2 

 Method 1∗ Method 2∗ Method 3∗ Method 1 Method 2 Method 3 DDH 

𝑉𝑎𝑅଴.଴ହ 0.0677 0.0607 0.0601 0.0865 0.0812 0.0789 1.8172 

𝐸𝑆଴.଴ହ 0.1412 0.1324 0.1329 0.1508 0.1462 0.1443 2.3848 

𝐸𝑆𝐻𝐸 0.0071 0.0066 0.0065 0.0083 0.0073 0.0072 1.3618 

𝐸𝐿 0.0365 0.0314 0.0319 0.0460 0.0428 0.0405 0.8863 
 

Panel B: Hedging risk measurements for Set 2 using European puts with standard strike prices 

 Method 1∗ Method 2∗ Method 3∗ Method 1 Method 2 Method 3 

𝑉𝑎𝑅଴.଴ହ 0.1651  0.1604  0.1612  0.2529  0.2519  0.2516  

𝐸𝑆଴.଴ହ 0.2279  0.2238  0.2419  0.3212  0.3203  0.3200  

𝐸𝑆𝐻𝐸 0.0180  0.0175  0.0361  0.0265  0.0264  0.0264  

𝐸𝐿 0.0913  0.0893  0.0914  0.1388  0.1382  0.1380  
 

Table 10. Hedging risk measurements for Set 2. For reference, the average option value of the American 

puts in Set 1 is 7.7062 based on the benchmarked FDM method, and when implementing the SHP methods, 

𝛾 ൌ 2.5 ሺ5ሻ and 𝑛 ൌ 6 for Panel A (B). In addition, the critical early exercise boundary (𝐵ሷ ௜), serving as 

the strike price of the European option in the SHP, is restricted to be in the set of Θ ൌ ሾ40,45, … ,95,100ሿ 

in Panel B. First, both panels consistently show that the proposed SHP methods exhibit smaller hedging 

risk compared to the traditional DDH (dynamic delta-neutral hedging) method, and the SHP methods with 

vega matching outperform the counterpart without vega matching. Taking Method 2∗  for example, its 

𝑉𝑎𝑅଴.଴ହ is 0.0607 (0.1604) without (with) the constraint of using European puts with standard strike prices. 

These two 𝑉𝑎𝑅଴.଴ହ values represent 0.79% and 2.08% of the average American put value, respectively. In 

contrast, the 𝑉𝑎𝑅଴.଴ହ of the DDH method is 1.8172, representing 23.58% of the average American put 

value. Although with the constraint of considering only standard strike prices, the hedging risk is 

unavoidable to increase in Panel B. However, the hedging performance of SHP methods in Panel B is still 

satisfactory and significantly superior to that of the DDH Method. 
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Panel A: Hedging risk measurements for early exercised paths of Set 2 

 Method 1∗ Method 2∗ Method 3∗ Method 1 Method 2 Method 3 DDH 

𝑉𝑎𝑅଴.଴ହ 0.0490 0.0419 0.0412 0.0682 0.0624 0.0602 1.6167 

𝐸𝑆଴.଴ହ 0.0877 0.0776 0.0782 0.0999 0.0943 0.0921 2.1825 

𝐸𝑆𝐻𝐸 0.0051 0.0043 0.0041 0.0063 0.0050 0.0050 1.4466 

𝐸𝐿 0.0320 0.0290 0.0290 0.0400 0.0364 0.0352 0.9907 
 

Panel B: Hedging risk measurements for early exercised paths of Set 2 using European puts with 

standard strike prices 

 Method 1∗ Method 2∗ Method 3∗ Method 1 Method 2 Method 3 

𝑉𝑎𝑅଴.଴ହ 0.1480  0.1429  0.1448  0.2362  0.2351  0.2348  

𝐸𝑆଴.଴ହ 0.1848  0.1801  0.1988  0.2875  0.2862  0.2858  

𝐸𝑆𝐻𝐸 0.0197  0.0193  0.0558  0.0311  0.0310  0.0309  

𝐸𝐿 0.0870  0.0843  0.0875  0.1325  0.1320  0.1317  
 

Table 11. Hedging risk measurements early exercised paths of Set 2. For reference, the average option 

value of the American puts in Set 1 is 7.7062 based on the benchmarked FDM method, and when 

implementing the SHP methods, 𝛾 ൌ 2.5 ሺ5ሻ and 𝑛 ൌ 6 for Panel A (B). In addition, the critical early 

exercise boundary (𝐵ሷ ௜), serving as the strike price of the European option in the SHP, is restricted to be in 

the set of Θ ൌ ሾ40,45, … ,95,100ሿ in Panel B. First, both panels consistently show that the proposed SHP 

methods exhibit smaller hedging risk compared to the traditional DDH (dynamic delta-neutral hedging) 

method, and the SHP methods with vega matching outperform the counterparts without vega matching. 

Taking Method 2∗  for example, its 𝑉𝑎𝑅଴.଴ହ  is 0.0419 (0.1429) without (with) the constraint of using 

European puts with standard strike prices. These two 𝑉𝑎𝑅଴.଴ହ values represent 0.54% and 1.85% of the 

average American put value, respectively. In contrast, the 𝑉𝑎𝑅଴.଴ହ  of the DDH method is 1.6167, 

representing 20.98% of the average American put value. Although with the constraint of considering only 

standard strike prices, the hedging risk is unavoidable to increase in Panel B. However, the hedging 

performance of SHP methods in Panel B is still satisfactory and significantly superior to that of the DDH 

Method. 

 


